Menu Close

Category: Limits

Question-209220

Question Number 209220 by alcohol last updated on 04/Jul/24 Answered by Berbere last updated on 04/Jul/24 $${SAB}\:,{SAC}\:\:\&{ABC}\:{c}\:{est}\:{claire}\:\left({AS}\right)\bot\left({ABC}\right)\:\&{ABC}\:{rectangle} \\ $$$$\Rightarrow{SA}^{\mathrm{2}} +{AB}^{\mathrm{2}} ={SB}^{\mathrm{2}} ;{SA}^{\mathrm{2}} +{AC}^{\mathrm{2}} ={SC}^{\mathrm{2}} ;{CA}^{\mathrm{2}}…

Question-209116

Question Number 209116 by alcohol last updated on 02/Jul/24 Answered by A5T last updated on 02/Jul/24 $${WLOG},\:{let}\:{a}\geqslant{b}\geqslant{c} \\ $$$$\mathrm{1}=\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}\leqslant\frac{\mathrm{3}}{{c}}\Rightarrow{c}\leqslant\mathrm{3} \\ $$$${when}\:{c}=\mathrm{3};\frac{\mathrm{2}}{\mathrm{3}}=\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}\leqslant\frac{\mathrm{2}}{{b}}\Rightarrow{b}\leqslant\mathrm{3} \\ $$$${b}=\mathrm{3}\Rightarrow{a}=\mathrm{3};\:{b}=\mathrm{2}\Rightarrow{a}=\mathrm{6}\:\:\:\rightarrow\leftarrow \\ $$$$\Rightarrow\left({a},{b},{c}\right)=\left(\mathrm{3},\mathrm{3},\mathrm{3}\right)…

lim-n-1-n-a-1-n-2-a-2-n-2-a-n-1-n-2-

Question Number 208093 by depressiveshrek last updated on 04/Jun/24 $$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{{n}}\left(\left({a}+\frac{\mathrm{1}}{{n}}\right)^{\mathrm{2}} +\left({a}+\frac{\mathrm{2}}{{n}}\right)^{\mathrm{2}} +…+\left({a}+\frac{{n}−\mathrm{1}}{{n}}\right)^{\mathrm{2}} \right) \\ $$ Answered by MM42 last updated on 04/Jun/24 $$={lim}_{{n}\rightarrow\infty} \frac{\mathrm{1}}{{n}}\underset{{i}=\mathrm{1}}…

lim-x-2-x-2-4-1-3-x-3-4-x-2-4-x-2-1-3-

Question Number 207816 by efronzo1 last updated on 27/May/24 $$\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{3}}]{\mathrm{x}^{\mathrm{2}} +\mathrm{4}}−\sqrt{\mathrm{x}^{\mathrm{3}} −\mathrm{4}}}{\:\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{4}}−\sqrt[{\mathrm{3}}]{\mathrm{x}−\mathrm{2}}} \\ $$ Commented by Frix last updated on 27/May/24 $$\mathrm{I}\:\mathrm{think}\:\mathrm{it}'\mathrm{s}\:\mathrm{0} \\…

lim-x-x-a-1-x-x-1-x-x-b-1-x-x-1-x-

Question Number 207339 by Ghisom last updated on 12/May/24 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\left({x}+{a}\right)^{\mathrm{1}/{x}} −{x}^{\mathrm{1}/{x}} }{\left({x}+{b}\right)^{\mathrm{1}/{x}} −{x}^{\mathrm{1}/{x}} }\:=? \\ $$ Answered by sniper237 last updated on 12/May/24 $$\:\frac{{a}}{{b}}\:\:\:{cause}\:\:\overset{{X}=\mathrm{1}/{x}}…