Menu Close

Category: Vector Calculus

Question-207712

Question Number 207712 by efronzo1 last updated on 24/May/24 Answered by Frix last updated on 24/May/24 $$\mathrm{For}\:{x}={q}\:\mathrm{and}\:{A}=\begin{pmatrix}{{p}}\\{\mathrm{0}}\end{pmatrix}\:\mathrm{the}\:\mathrm{area}\:\mathrm{is}\:\left({q}−{p}\right)\sqrt{{p}} \\ $$$$\frac{{d}\left[\left({q}−{p}\right)\sqrt{{p}}\right]}{{dp}}=\mathrm{0} \\ $$$$\frac{{q}−\mathrm{3}{p}}{\mathrm{2}\sqrt{{p}}}=\mathrm{0}\:\Rightarrow\:{p}=\frac{{q}}{\mathrm{3}} \\ $$$$\mathrm{Max}\:\mathrm{area}\:=\frac{\mathrm{2}\sqrt{\mathrm{3}}{q}^{\frac{\mathrm{3}}{\mathrm{2}}} }{\mathrm{9}} \\…

f-x-1-x-1-ln-2-4-Domain-f-x-

Question Number 204273 by mustafazaheen last updated on 10/Feb/24 $$\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{ln}\left(\frac{\mathrm{2}}{\mathrm{4}}\right)} } \\ $$$$\mathrm{Domain}\:\mathrm{f}\left(\mathrm{x}\right)\:=? \\ $$ Answered by Mathspace last updated on 11/Feb/24 $${f}\left({x}\right)=\frac{\mathrm{1}}{\left({x}−\mathrm{1}\right)^{{ln}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)} }=\frac{\mathrm{1}}{\left({x}−\mathrm{1}\right)^{−{ln}\mathrm{2}} }…

Let-A-R-N-N-be-a-symmetric-positive-definite-matrix-and-b-R-N-a-vector-If-x-R-N-evaluate-the-integral-Z-A-b-e-1-2-x-T-Ax-b-T-x-dx-as-a-function-of-A-and-b-

Question Number 203900 by necx122 last updated on 01/Feb/24 $${Let}\:{A}\:\in\:{R}^{{N}×{N}} \:{be}\:{a}\:{symmetric}\:{positive} \\ $$$${definite}\:{matrix}\:{and}\:{b}\:\in\:{R}^{{N}} \:{a}\:{vector}. \\ $$$${If}\:{x}\:\in\:{R}^{{N}} ,\:{evaluate}\:{the}\:{integral} \\ $$$${Z}\left({A},{b}\right)\:=\:\int{e}^{−\frac{\mathrm{1}}{\mathrm{2}}{x}^{{T}} {Ax}\:+\:{b}^{{T}} {x}} {dx}\:{as}\:{a}\:{function} \\ $$$${of}\:{A}\:{and}\:{b}. \\…

Question-201947

Question Number 201947 by Mingma last updated on 16/Dec/23 Answered by Frix last updated on 18/Dec/23 $$\mathrm{sin}\:\alpha\:\mathrm{sin}\:\beta\:\mathrm{cos}\:\left(\pi−\alpha−\beta\right)\:+ \\ $$$$\:\:\:\:\:+\mathrm{sin}\:\beta\:\mathrm{sin}\:\left(\pi−\alpha−\beta\right)\:\mathrm{cos}\:\alpha\:+ \\ $$$$\:\:\:\:\:+\mathrm{sin}\:\left(\pi−\alpha−\beta\right)\:\mathrm{sin}\:\alpha\:\mathrm{cos}\:\beta\:= \\ $$$$=\frac{\mathrm{3}−\left(\mathrm{cos}\:\mathrm{2}\alpha\:+\mathrm{cos}\:\mathrm{2}\beta\:+\mathrm{cos}\:\mathrm{2}\left(\alpha+\beta\right)\right.}{\mathrm{4}}= \\ $$$$\:\:\:\:\:\left[\mathrm{Let}\:\alpha={u}−{v}\wedge\beta={u}+{v}\right]…

14-15-6-45-28-6-

Question Number 201144 by sts313 last updated on 30/Nov/23 $$\left(\frac{\mathrm{14}}{\mathrm{15}}\right)^{\mathrm{6}} ×\left(\frac{\mathrm{45}}{\mathrm{28}}\right)^{\mathrm{6}} = \\ $$ Answered by mathlove last updated on 01/Dec/23 $$\left(\frac{\mathrm{14}}{\mathrm{15}}\right)^{\mathrm{6}} ×\left(\frac{\mathrm{3}×\mathrm{15}}{\mathrm{2}×\mathrm{14}}\right)^{\mathrm{6}} =\frac{\cancel{\mathrm{14}^{\mathrm{6}} }}{\cancel{\mathrm{15}^{\mathrm{6}}…

A-ball-lies-on-the-function-z-xy-at-the-point-1-2-2-Find-the-point-in-the-xy-plane-where-the-ball-will-touch-it-Calculus-2-problem-

Question Number 200929 by Akira181 last updated on 26/Nov/23 $$\mathrm{A}\:\mathrm{ball}\:\mathrm{lies}\:\mathrm{on}\:\mathrm{the}\:\mathrm{function}\:{z}={xy}\:\mathrm{at} \\ $$$$\mathrm{the}\:\mathrm{point}\:\left(\mathrm{1},\mathrm{2},\mathrm{2}\right).\:\mathrm{Find}\:\mathrm{the}\:\mathrm{point}\:\mathrm{in} \\ $$$$\mathrm{the}\:{xy}−\mathrm{plane}\:\mathrm{where}\:\mathrm{the}\:\mathrm{ball}\:\mathrm{will} \\ $$$$\mathrm{touch}\:\mathrm{it}. \\ $$$$\mathrm{Calculus}\:\mathrm{2}\:\mathrm{problem}. \\ $$ Commented by Akira181 last updated…