Menu Close

Category: Differential Equation

Solve-5x-2-y-x-1-x-y-y-0-

Question Number 217797 by Tawa11 last updated on 21/Mar/25 $$\mathrm{Solve}: \\ $$$$\:\:\:\:\:\mathrm{5x}^{\mathrm{2}} \:\mathrm{y}''\:\:+\:\:\:\mathrm{x}\left(\mathrm{1}\:\:+\:\:\mathrm{x}\right)\:\mathrm{y}'\:\:−\:\:\mathrm{y}\:\:\:=\:\:\:\mathrm{0} \\ $$ Answered by AntonCWX8 last updated on 22/Mar/25 $${I}.{F},\:\mu\left({x}\right)=\frac{\mathrm{1}}{\mathrm{5}{x}^{\mathrm{2}} }{e}^{\int\frac{{x}\left(\mathrm{1}+{x}\right)}{\mathrm{5}{x}^{\mathrm{2}} }{dx}}…

find-the-following-differential-equation-by-eliminating-the-arbritrary-constant-1-y-Ae-x-Bcosx-2-xy-Ae-x-Be-x-x-2-

Question Number 217245 by OmoloyeMichael last updated on 07/Mar/25 $${find}\:{the}\:{following}\:{differential}\:{equation}\: \\ $$$${by}\:{eliminating}\:{the}\:{arbritrary}\:{constant} \\ $$$$\left(\mathrm{1}\right){y}={Ae}^{{x}} +{Bcosx} \\ $$$$\left(\mathrm{2}\right)\:{xy}={Ae}^{{x}} +{Be}^{−{x}} +{x}^{\mathrm{2}} \\ $$$$ \\ $$ Answered by…

Form-the-differential-equation-by-eliminating-abitrary-constant-y-2-Ax-2-Bx-C-

Question Number 216982 by OmoloyeMichael last updated on 26/Feb/25 $$\boldsymbol{{Form}}\:\boldsymbol{{the}}\:\boldsymbol{{differential}}\:\boldsymbol{{equation}}\:\boldsymbol{{by}} \\ $$$$\boldsymbol{{eliminating}}\:\boldsymbol{{abitrary}}\:\boldsymbol{{constant}}. \\ $$$$\boldsymbol{{y}}^{\mathrm{2}} =\boldsymbol{{Ax}}^{\mathrm{2}} +\boldsymbol{{Bx}}+\boldsymbol{{C}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

form-the-differential-equationfrom-the-following-1-y-Ae-3x-Be-5x-2-y-2-x-1-3-c-y-c-2-x-3-0-

Question Number 216787 by Engr_Jidda last updated on 20/Feb/25 $${form}\:{the}\:{differential}\:{equationfrom}\:{the}\:{following} \\ $$$$\left.\mathrm{1}\right)\:{y}={Ae}^{\mathrm{3}{x}} +{Be}^{\mathrm{5}{x}} \\ $$$$\left.\mathrm{2}\right)\:{y}^{\mathrm{2}} =\left({x}−\mathrm{1}\right) \\ $$$$\left.\mathrm{3}\right)\:{c}\left({y}+{c}\right)^{\mathrm{2}} +{x}^{\mathrm{3}} =\mathrm{0} \\ $$ Answered by som(math1967)…

Uhhhh-can-you-guys-solve-Partial-differantial-equation-2-0-Cylinderical-Laplacian-case-2-1-1-2-2-2-2-z-2-Spherical-Laplacian-case-2-

Question Number 213097 by issac last updated on 30/Oct/24 $$\mathrm{Uhhhh}. \\ $$$$\mathrm{can}\:\mathrm{you}\:\mathrm{guys}\:\mathrm{solve}\:\mathrm{Partial}\:\mathrm{differantial}\:\mathrm{equation} \\ $$$$\bigtriangledown^{\mathrm{2}} \boldsymbol{\phi}=\mathrm{0} \\ $$$$\mathrm{Cylinderical}\:\mathrm{Laplacian}\:\mathrm{case} \\ $$$$\bigtriangledown^{\mathrm{2}} =\frac{\mathrm{1}}{\rho}\centerdot\frac{\partial\:\:}{\partial\rho}\left(\rho\frac{\partial\:\:}{\partial\rho}\right)+\left(\frac{\mathrm{1}}{\rho}\right)^{\mathrm{2}} \frac{\partial^{\mathrm{2}} \:}{\partial\phi^{\mathrm{2}} }+\frac{\partial^{\mathrm{2}} \:\:}{\partial{z}^{\mathrm{2}} }…