Menu Close

Author: Tinku Tara

Find-n-1-1-n-1-n-3-n-1-3-2n-1-2-

Question Number 220540 by hardmath last updated on 14/May/25 $$\mathrm{Find}:\:\:\:\boldsymbol{\Omega}\:=\:\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\left(−\mathrm{1}\right)^{\boldsymbol{\mathrm{n}}+\mathrm{1}} }{\mathrm{n}^{\mathrm{3}} \centerdot\left(\mathrm{n}\:+\:\mathrm{1}\right)^{\mathrm{3}} \centerdot\left(\mathrm{2n}\:+\:\mathrm{1}\right)^{\mathrm{2}} }\:=\:? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

each-J-z-Y-z-are-linear-independent-W-Ronskian-J-z-Y-z-determinant-J-z-Y-z-J-z-Y-z-J-1-z-Y-z-J-z-Y-1-z-J-1-

Question Number 220502 by SdC355 last updated on 14/May/25 $$\mathrm{each}\:{J}_{\nu} \left({z}\right),{Y}_{\nu} \left({z}\right)\:\mathrm{are}\:\mathrm{linear}\:\mathrm{independent}….?? \\ $$$${W}_{\mathrm{Ronskian}} \left\{{J}_{\nu} ^{\:} \left({z}\right),{Y}_{\nu} \left({z}\right)\right\}=\begin{vmatrix}{{J}_{\nu} \left({z}\right)}&{\:{Y}_{\nu} \left({z}\right)}\\{{J}_{\nu} '\left({z}\right)}&{{Y}_{\nu} '\left({z}\right)}\end{vmatrix} \\ $$$$={J}_{\nu} ^{\left(\mathrm{1}\right)}…

Solve-in-R-15-x-2-3x-4-7-x-2-7x-10-x-2-4x-21-1-0-

Question Number 220519 by hardmath last updated on 14/May/25 $$\mathrm{Solve}\:\mathrm{in}\:\:\:\mathbb{R} \\ $$$$\frac{\mathrm{15}}{\mathrm{x}^{\mathrm{2}} \:-\:\mathrm{3x}\:+\:\mathrm{4}}\:\:+\:\:\frac{\mathrm{7}}{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{7x}}\:\:+\:\:\frac{\mathrm{10}}{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{4x}\:-\:\mathrm{21}}\:\:+\:\mathrm{1}\:=\:\mathrm{0} \\ $$ Commented by Nicholas666 last updated on 14/May/25 $$…

lim-n-tan-pi-4-1-n-n-t-1-n-lim-t-0-tan-pi-4-t-1-t-lim-t-0-tan-pi-4-t-1-1-t-lim-t-0-1-tant-1-tant-1-1-t-lim-t-0-2tant-1-tant-1-t-2-An

Question Number 220473 by mehdee7396 last updated on 13/May/25 $${lim}_{{n}\rightarrow\infty} \left({tan}\left(\frac{\pi}{\mathrm{4}}+\frac{\mathrm{1}}{{n}}\right)\right)^{{n}} \:\:\:\:\:\overset{{t}=\frac{\mathrm{1}}{{n}}} {\rightarrow} \\ $$$$={lim}_{{t}\rightarrow\mathrm{0}} \left[{tan}\left(\frac{\pi}{\mathrm{4}}+{t}\right)\right]^{\frac{\mathrm{1}}{{t}}} \\ $$$$\Rightarrow{lim}_{{t}\rightarrow\mathrm{0}} \left[{tan}\left(\frac{\pi}{\mathrm{4}}+{t}\right)−\mathrm{1}\right]×\frac{\mathrm{1}}{{t}} \\ $$$$={lim}_{{t}\rightarrow\mathrm{0}} \left(\frac{\mathrm{1}+{tant}}{\mathrm{1}−{tant}}−\mathrm{1}\right)×\frac{\mathrm{1}}{{t}} \\ $$$$={lim}_{{t}\rightarrow\mathrm{0}} \left(\frac{\mathrm{2}{tant}}{\mathrm{1}−{tant}}\right)×\frac{\mathrm{1}}{{t}}=\mathrm{2}…

Question-220474

Question Number 220474 by Rojarani last updated on 13/May/25 Commented by Ghisom last updated on 13/May/25 $${a}_{{n}} =\mathrm{2}−\frac{\mathrm{1}}{{n}^{\mathrm{2}} +\sqrt{{n}^{\mathrm{4}} +\frac{\mathrm{1}}{\mathrm{4}}}}= \\ $$$$=\mathrm{4}{n}^{\mathrm{2}} +\mathrm{2}−\mathrm{2}\sqrt{\mathrm{4}{n}^{\mathrm{4}} +\mathrm{1}} \\…

0-1-6x-1-x-x-1-x-2-1-ln-x-1-dx-

Question Number 220469 by Nicholas666 last updated on 13/May/25 $$ \\ $$$$\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\:\frac{\mathrm{6}{x}\left(\mathrm{1}\:−\:{x}\right)}{\left({x}\:+\:\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+\:\mathrm{1}\right)\:\mathrm{ln}\:\left({x}\:+\:\mathrm{1}\right)}\:{dx} \\ $$$$ \\ $$ Terms of Service Privacy Policy Contact:…