Menu Close

Category: Differentiation

If-f-0-b-continuous-R-g-R-b-periodic-continuous-R-lim-n-0-b-f-x-g-nx-dx-1-b-0-b-f-x-dx-0-b-g-x-dx-

Question Number 204372 by mnjuly1970 last updated on 14/Feb/24 $$ \\ $$$$\:\:{If}\:,\:\:\:\:{f}\::\:\left[\:\mathrm{0}\:,\:{b}\right]\:\overset{{continuous}} {\rightarrow}\:\mathbb{R}\: \\ $$$$\:\:\:\:\:\:\:\:,\:\:\:\:{g}\::\:\mathbb{R}\:\underset{{b}−{periodic}} {\overset{{continuous}} {\rightarrow}}\:\mathbb{R} \\ $$$$\:\:\:\:\:\:\Rightarrow\:\:{lim}_{{n}\rightarrow\infty} \:\int_{\mathrm{0}} ^{\:{b}} {f}\left({x}\right){g}\left({nx}\right){dx}\overset{?} {=}\frac{\mathrm{1}}{{b}}\:\int_{\mathrm{0}} ^{\:{b}} {f}\left({x}\right){dx}\:.\int_{\mathrm{0}}…

Question-203063

Question Number 203063 by LowLevelLump last updated on 09/Jan/24 Answered by MM42 last updated on 09/Jan/24 $${f}'={e}^{{x}} −{a}=\mathrm{0}\Rightarrow\alpha={lna} \\ $$$$\Rightarrow{minf}={a}−{alna} \\ $$$$\:{g}'={a}−\frac{\mathrm{1}}{{x}}=\mathrm{0}\Rightarrow\beta=\frac{\mathrm{1}}{{a}} \\ $$$$\Rightarrow{ming}=\mathrm{1}+{lna} \\…

tan-3-xy-2-y-x-find-dy-dx-

Question Number 201940 by Calculusboy last updated on 15/Dec/23 $$\boldsymbol{{tan}}^{\mathrm{3}} \left(\boldsymbol{{xy}}^{\mathrm{2}} +\boldsymbol{{y}}\right)=\boldsymbol{{x}}\:\:\boldsymbol{{find}}\:\frac{\boldsymbol{{dy}}}{\boldsymbol{{dx}}} \\ $$ Answered by cortano12 last updated on 16/Dec/23 $$\:\:\Rightarrow\frac{\mathrm{d}}{\mathrm{dx}}\:\left[\:\mathrm{tan}\:^{\mathrm{3}} \left(\mathrm{xy}^{\mathrm{2}} +\mathrm{y}\right)\:\right]\:=\:\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}\right) \\…

A-ball-lies-on-the-function-z-xy-at-the-point-1-2-2-Find-the-point-in-the-xy-plane-where-the-ball-will-touch-it-an-unsolved-old-question-Q200929-

Question Number 201214 by mr W last updated on 02/Dec/23 $$\mathrm{A}\:\mathrm{ball}\:\mathrm{lies}\:\mathrm{on}\:\mathrm{the}\:\mathrm{function}\:{z}={xy}\:\mathrm{at} \\ $$$$\mathrm{the}\:\mathrm{point}\:\left(\mathrm{1},\mathrm{2},\mathrm{2}\right).\:\mathrm{Find}\:\mathrm{the}\:\mathrm{point}\:\mathrm{in} \\ $$$$\mathrm{the}\:{xy}−\mathrm{plane}\:\mathrm{where}\:\mathrm{the}\:\mathrm{ball}\:\mathrm{will} \\ $$$$\mathrm{touch}\:\mathrm{it}. \\ $$$$ \\ $$$$\left({an}\:{unsolved}\:{old}\:{question}\:{Q}\mathrm{200929}\right) \\ $$ Answered by…

If-R-x-2-yi-2y-2-zj-xy-2-z-2-k-find-d-2-R-dx-2-d-2-R-dy-2-at-the-point-2-1-2-

Question Number 201140 by Calculusboy last updated on 30/Nov/23 $$\boldsymbol{{If}}\:\underset{−} {\boldsymbol{{R}}}=\boldsymbol{{x}}^{\mathrm{2}} \boldsymbol{{y}}\underset{−} {\boldsymbol{{i}}}−\mathrm{2}\boldsymbol{{y}}^{\mathrm{2}} \boldsymbol{{z}}\underset{−} {\boldsymbol{{j}}}+\boldsymbol{{xy}}^{\mathrm{2}} \boldsymbol{{z}}^{\mathrm{2}} \underset{−} {\boldsymbol{{k}}},\:\boldsymbol{{find}}\:\mid\frac{\boldsymbol{{d}}^{\mathrm{2}} \boldsymbol{{R}}}{\boldsymbol{{dx}}^{\mathrm{2}} }×\frac{\boldsymbol{{d}}^{\mathrm{2}} \boldsymbol{{R}}}{\boldsymbol{{dy}}^{\mathrm{2}} }\mid\:\: \\ $$$$\boldsymbol{{at}}\:\boldsymbol{{the}}\:\boldsymbol{{point}}\:\left(\mathrm{2},\mathrm{1},−\mathrm{2}\right) \\…