Question Number 139737 by mathsuji last updated on 30/Apr/21

$${Find}\:{the}\:{value}\:{of}\:{X}\:{such}\:{that}: \\ $$$$\mathrm{1}\centerdot\mathrm{5}\centerdot\mathrm{9}\centerdot\mathrm{13}\centerdot\mathrm{17}\centerdot…\centerdot\mathrm{2021}\equiv{X}\left({mod}\mathrm{1000}\right) \\ $$
Answered by mindispower last updated on 01/May/21
![A=Π_(k=0) ^(505) (1+4k)≡X[1000] 1000=8.5^3 k=2n⇒1+4k≡1[8] k=2n+1⇒1+4k≡5[8] Π_(k=0) ^(505) (1+4k)≡Π_(k=0) ^(252) (8k+1).Π_(k=0) ^(252) (5+8k)≡Π_(k=0) ^(252) 5[8] =5^(252) [8] 5^2 =1[8]⇒5^(252) ≡1[8] ⇒A≡1[8] 1+4k=5s⇒5s−4k=1 (s,k)=(1,1) solution ⇒5(s−1)−4(k−1)=0⇒k=5l+1 ⇒1+4(5l+1)=5(4l+1)=1+4k l=0,l=1,l=2⇒5,45,25∈{1,5,9,13,17^](https://www.tinkutara.com/question/Q139813.png)