Question Number 143261 by Mathspace last updated on 12/Jun/21

$${find}\:{Y}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)….\left({x}+{n}\right)} \\ $$$$\left({n}>\mathrm{1}\:{integr}\right) \\ $$
Answered by Olaf_Thorendsen last updated on 12/Jun/21
![Y_n = ∫_0 ^1 (dx/(Π_(k=1) ^n (x+k))) Y_n = ∫_0 ^1 Σ_(k=1) ^n (A_k /(x+k)) dx A_k = (1/(Π_(p=1_(p≠k) ) ^n (−k+p))) Y_n = [Σ_(k=1) ^n A_k ln∣x+k∣]_0 ^1 Y_n = Σ_(k=1) ^n A_k ln(1+(1/k)) Y_n = Σ_(k=1) ^n ((ln(1+(1/k)))/(Π_(k=1_(p≠k) ) ^n (p−k)))](https://www.tinkutara.com/question/Q143304.png)
$$ \\ $$$${Y}_{{n}} \:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\left({x}+{k}\right)} \\ $$$${Y}_{{n}} \:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{\mathrm{A}_{{k}} }{{x}+{k}}\:{dx} \\ $$$$\mathrm{A}_{{k}} \:=\:\:\frac{\mathrm{1}}{\underset{\underset{{p}\neq{k}} {{p}=\mathrm{1}}} {\overset{{n}} {\prod}}\left(−{k}+{p}\right)} \\ $$$${Y}_{{n}} \:=\:\left[\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{A}_{{k}} \mathrm{ln}\mid{x}+{k}\mid\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$${Y}_{{n}} \:=\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{A}_{{k}} \mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{k}}\right) \\ $$$${Y}_{{n}} \:=\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{k}}\right)}{\underset{\underset{{p}\neq{k}} {{k}=\mathrm{1}}} {\overset{{n}} {\prod}}\left({p}−{k}\right)} \\ $$