Question Number 9471 by tawakalitu last updated on 09/Dec/16
![prove by mathematical induction a + (a + d) + (a + 2d) + ... + [a + (n − 1)d] = (1/2)n[2a + (n − 1)d]](https://www.tinkutara.com/question/Q9471.png)
$$\mathrm{prove}\:\mathrm{by}\:\mathrm{mathematical}\:\mathrm{induction} \\ $$$$\mathrm{a}\:+\:\left(\mathrm{a}\:+\:\mathrm{d}\right)\:+\:\left(\mathrm{a}\:+\:\mathrm{2d}\right)\:+\:…\:+\:\left[\mathrm{a}\:+\:\left(\mathrm{n}\:−\:\mathrm{1}\right)\mathrm{d}\right]\:=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{n}\left[\mathrm{2a}\:+\:\left(\mathrm{n}\:−\:\mathrm{1}\right)\mathrm{d}\right]\: \\ $$
Answered by mrW last updated on 10/Dec/16
![for n=1: a=^! (1/2)×1×[2a+(1−1)d]=a for n+1: a + (a + d) + (a + 2d) + ... + [a + (n − 1)d]+[a+(n+1−1)d] =(1/2)n[2a + (n − 1)d]+[a+(n+1−1)d] =(1/2)n[2a + (n − 1)d]+[a+nd] =((n[2a + (n − 1)d]+2(a+nd))/2) =((2na +n(n−1)d+2(a+nd))/2) =((2(n+1)a +(n+1)nd)/2) =(1/2)(n+1)[2a +(n+1−1)d] ⇒proved!](https://www.tinkutara.com/question/Q9477.png)
$$\mathrm{for}\:\mathrm{n}=\mathrm{1}: \\ $$$$\mathrm{a}\overset{!} {=}\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{1}×\left[\mathrm{2a}+\left(\mathrm{1}−\mathrm{1}\right)\mathrm{d}\right]=\mathrm{a} \\ $$$$ \\ $$$$\mathrm{for}\:\mathrm{n}+\mathrm{1}: \\ $$$$\mathrm{a}\:+\:\left(\mathrm{a}\:+\:\mathrm{d}\right)\:+\:\left(\mathrm{a}\:+\:\mathrm{2d}\right)\:+\:…\:+\:\left[\mathrm{a}\:+\:\left(\mathrm{n}\:−\:\mathrm{1}\right)\mathrm{d}\right]+\left[\mathrm{a}+\left(\mathrm{n}+\mathrm{1}−\mathrm{1}\right)\mathrm{d}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{n}\left[\mathrm{2a}\:+\:\left(\mathrm{n}\:−\:\mathrm{1}\right)\mathrm{d}\right]+\left[\mathrm{a}+\left(\mathrm{n}+\mathrm{1}−\mathrm{1}\right)\mathrm{d}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{n}\left[\mathrm{2a}\:+\:\left(\mathrm{n}\:−\:\mathrm{1}\right)\mathrm{d}\right]+\left[\mathrm{a}+\mathrm{nd}\right] \\ $$$$=\frac{\mathrm{n}\left[\mathrm{2a}\:+\:\left(\mathrm{n}\:−\:\mathrm{1}\right)\mathrm{d}\right]+\mathrm{2}\left(\mathrm{a}+\mathrm{nd}\right)}{\mathrm{2}} \\ $$$$=\frac{\mathrm{2na}\:+\mathrm{n}\left(\mathrm{n}−\mathrm{1}\right)\mathrm{d}+\mathrm{2}\left(\mathrm{a}+\mathrm{nd}\right)}{\mathrm{2}} \\ $$$$=\frac{\mathrm{2}\left(\mathrm{n}+\mathrm{1}\right)\mathrm{a}\:+\left(\mathrm{n}+\mathrm{1}\right)\mathrm{nd}}{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{n}+\mathrm{1}\right)\left[\mathrm{2a}\:+\left(\mathrm{n}+\mathrm{1}−\mathrm{1}\right)\mathrm{d}\right] \\ $$$$\Rightarrow\mathrm{proved}! \\ $$
Commented by tawakalitu last updated on 10/Dec/16

$$\mathrm{Thanks}\:\mathrm{so}\:\mathrm{much}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}. \\ $$