Question Number 74308 by Learner-123 last updated on 21/Nov/19

Answered by Tanmay chaudhury last updated on 22/Nov/19
![P×2R=Iα α=((w−w_0 )/t) ((w−w_0 )/t)=((P×2R)/I) w=w_0 +(((2PR)/I))t ⇛w=w_0 +((2PR)/(m(R^2 /2)+mR^2 ))t w=w_0 +((4PR)/(3mR^2 ))×t [ edited] w=w_0 +((4P)/(3mR))×t](https://www.tinkutara.com/question/Q74309.png)
$${P}×\mathrm{2}{R}={I}\alpha \\ $$$$\alpha=\frac{{w}−{w}_{\mathrm{0}} }{{t}} \\ $$$$\frac{{w}−{w}_{\mathrm{0}} }{{t}}=\frac{{P}×\mathrm{2}{R}}{{I}} \\ $$$${w}={w}_{\mathrm{0}} +\left(\frac{\mathrm{2}{PR}}{{I}}\right){t}\:\:\Rrightarrow{w}={w}_{\mathrm{0}} +\frac{\mathrm{2}{PR}}{{m}\frac{{R}^{\mathrm{2}} }{\mathrm{2}}+{mR}^{\mathrm{2}} }{t} \\ $$$${w}={w}_{\mathrm{0}} +\frac{\mathrm{4}{PR}}{\mathrm{3}{mR}^{\mathrm{2}} }×{t}\:\:\:\left[\:{edited}\right] \\ $$$${w}={w}_{\mathrm{0}} +\frac{\mathrm{4}{P}}{\mathrm{3}{mR}}×{t} \\ $$
Commented by Learner-123 last updated on 21/Nov/19

$${thanks}\:{sir}. \\ $$$${typo}\:{in}\:\mathrm{2}^{{nd}} \:{last}\:{line}\:\left({t}\:{is}\:{missing}!\right) \\ $$
Commented by Tanmay chaudhury last updated on 22/Nov/19

$${thanks}…{edited} \\ $$