Question Number 175320 by cortano1 last updated on 27/Aug/22

$$\:\:\begin{cases}{\mathrm{4}{x}=\mathrm{2}\left({mod}\:\mathrm{9}\right)}\\{\mathrm{7}{x}=\mathrm{2}\:\left({mod}\:\mathrm{13}\right)}\end{cases} \\ $$
Commented by cortano1 last updated on 27/Aug/22

$${i}\:{got}\:{x}=\mathrm{23}\:+\mathrm{117}{k}\:{sir} \\ $$
Commented by Rasheed.Sindhi last updated on 27/Aug/22

$${sir}\:{x}=\mathrm{23}+\mathrm{117}{k}\:\:{doesn}'{t}\:{satisfy} \\ $$$$\mathrm{7}{x}\equiv\mathrm{2}\left({mod}\:\mathrm{13}\right) \\ $$
Commented by cortano1 last updated on 27/Aug/22

$${o}\:{yes}.\:{i}\:{am}\:{typo}\:\mathrm{6}×\mathrm{13}=\mathrm{68}\: \\ $$
Answered by Rasheed.Sindhi last updated on 27/Aug/22

$$\mathrm{4}{x}\equiv\mathrm{2}+\mathrm{2}×\mathrm{9}\left({mod}\:\mathrm{9}\right) \\ $$$${x}\equiv\mathrm{5}\left({mod}\:\mathrm{9}\right) \\ $$$${x}=\mathrm{5}+\mathrm{9}{m} \\ $$$$\mathrm{7}{x}\equiv\mathrm{2}\left({mod}\:\mathrm{13}\right)\Rightarrow\mathrm{7}\left(\mathrm{5}+\mathrm{9}{m}\right)\equiv\mathrm{2}\left({mod}\:\mathrm{13}\right. \\ $$$$\mathrm{35}+\mathrm{63}{m}\equiv\mathrm{2}\left({mod}\:\mathrm{13}\right) \\ $$$$\mathrm{63}{m}\equiv−\mathrm{33}\left({mod}\:\mathrm{13}\right) \\ $$$${m}=\mathrm{10} \\ $$$${x}=\mathrm{5}+\mathrm{9}{m}=\mathrm{5}+\mathrm{9}\left(\mathrm{10}\right)=\mathrm{95} \\ $$$${x}=\mathrm{95}+{k}×\mathrm{LCM}\left(\mathrm{9},\mathrm{13}\right)\:;{k}\in\mathbb{Z} \\ $$$${x}=\mathrm{95}+\mathrm{117}{k}\:;{k}\in\mathbb{Z} \\ $$
Commented by Tawa11 last updated on 27/Aug/22

$$\mathrm{Great}\:\mathrm{sir} \\ $$
Answered by mr W last updated on 27/Aug/22

$$\mathrm{4}{x}=\mathrm{9}{k}+\mathrm{2} \\ $$$$\Rightarrow{x}=\mathrm{9}{m}+\mathrm{5} \\ $$$$\mathrm{7}\left(\mathrm{9}{m}+\mathrm{5}\right)=\mathrm{13}{h}+\mathrm{2} \\ $$$$\mathrm{13}{h}−\mathrm{63}{m}=\mathrm{33} \\ $$$$\Rightarrow{m}=\mathrm{13}{n}+\mathrm{10} \\ $$$$\Rightarrow{x}=\mathrm{9}\left(\mathrm{13}{n}+\mathrm{10}\right)+\mathrm{5}=\mathrm{117}{n}+\mathrm{95} \\ $$
Answered by CElcedricjunior last updated on 28/Aug/22
![{ ((4x≡2[9])),((7x≡2[13])) :}=> { ((28x≡14[9])),((14x≡4[13])) :}=> { ((x≡5[9])),((x≡4[13])) :} =>∃p ;q∈Z/ { ((x=9p+5)),((x=13q+4)) :} or x=x⇔9p−13q=−1 pgcd(9;13)=1 et 1/1 alors cette equation admet de solution soit (−3;−2) une solution particuliee 9p−13q=9(−3)−13(−2) =>9(p+3)=13(q+2)(1) =>9/13(q+2)or pgcd(9;13)=1 =>9/q+2 ⇔∃k∈Z/ q+2=9k (2) =>q=9k−2 (2) dans (1)=>9(p+3)=13(9k) =>p+3=13k=>p=13k−3 de ce qui prece^](https://www.tinkutara.com/question/Q175367.png)