Question Number 37228 by abdo.msup.com last updated on 11/Jun/18
![E id k vectorial space and f∈L(E) 1)prove that if f is nilpotent with indice p≥1 ,I −f is bijective and (I−f)^(−1) =Σ_(i=0) ^(p−1) f^i 2)let E=R_n [x] and f∈L(E) / f(p) =p−p^′ prove that f is inversible and find f^(−1) .](https://www.tinkutara.com/question/Q37228.png)
$${E}\:{id}\:{k}\:{vectorial}\:{space}\:{and}\:{f}\in{L}\left({E}\right) \\ $$$$\left.\mathrm{1}\right){prove}\:{that}\:{if}\:{f}\:{is}\:{nilpotent}\:{with}\:{indice} \\ $$$${p}\geqslant\mathrm{1}\:,{I}\:−{f}\:{is}\:{bijective}\:{and} \\ $$$$\left({I}−{f}\right)^{−\mathrm{1}} =\sum_{{i}=\mathrm{0}} ^{{p}−\mathrm{1}} {f}^{{i}} \\ $$$$\left.\mathrm{2}\right){let}\:{E}={R}_{{n}} \left[{x}\right]\:{and}\:{f}\in{L}\left({E}\right)\:/ \\ $$$${f}\left({p}\right)\:={p}−{p}^{'} \:\:{prove}\:{that}\:{f}\:{is}\:{inversible} \\ $$$${and}\:{find}\:{f}^{−\mathrm{1}} \:. \\ $$