Question Number 168872 by MikeH last updated on 20/Apr/22
![E=∫^π _0 [((a^2 σ sin θ)/(2ε(√(a^2 −x^2 −2ax cosθ))))]dθ If a>x show that E = ((a^2 σ)/(εx))](https://www.tinkutara.com/question/Q168872.png)
$${E}=\underset{\mathrm{0}} {\int}^{\pi} \left[\frac{{a}^{\mathrm{2}} \sigma\:\mathrm{sin}\:\theta}{\mathrm{2}\epsilon\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} −\mathrm{2}{ax}\:\mathrm{cos}\theta}}\right]{d}\theta \\ $$$$\mathrm{If}\:{a}>{x}\:\mathrm{show}\:\mathrm{that}\:{E}\:=\:\frac{{a}^{\mathrm{2}} \sigma}{\epsilon{x}} \\ $$
Commented by Tinku Tara last updated on 21/Apr/22

$$\mathrm{square}\:\mathrm{bracket}\:\left[\right. \\ $$
Commented by safojontoshtemirov last updated on 20/Apr/22

$${What}\:{paratheses}\:{is}\:{this} \\ $$