Question Number 27601 by abdo imad last updated on 10/Jan/18
![f fonction numerical increasing on ]0,1] and ∫_0 ^1 f(t)dt converges prove that lim_(n−>∝) (1/n) Σ_(k=1) ^n f((k/n)) = ∫_0 ^1 f(t)dt .](https://www.tinkutara.com/question/Q27601.png)
$$\left.{f}\left.\:{fonction}\:{numerical}\:{increasing}\:{on}\:\right]\mathrm{0},\mathrm{1}\right]\:{and} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({t}\right){dt}\:{converges}\:{prove}\:{that}\:\:{lim}_{{n}−>\propto} \:\:\frac{\mathrm{1}}{{n}}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:{f}\left(\frac{{k}}{{n}}\right) \\ $$$$=\:\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({t}\right){dt}\:\:. \\ $$