Question Number 33701 by math khazana by abdo last updated on 22/Apr/18
![let Σ f_n (x) with f_n (x) = ((sin(nx))/(n^2 (n+1))) and S its sum x∈[−π,π] prove that ∀(x,y)∈[−π,π]^2 x≠y ⇒∣S(x)−S(y)∣<∣x−y∣ .](https://www.tinkutara.com/question/Q33701.png)
$${let}\:\Sigma\:{f}_{{n}} \left({x}\right)\:{with}\:{f}_{{n}} \left({x}\right)\:=\:\frac{{sin}\left({nx}\right)}{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)}\:\:{and}\:{S}\:{its}\:{sum} \\ $$$${x}\in\left[−\pi,\pi\right]\:{prove}\:{that}\:\forall\left({x},{y}\right)\in\left[−\pi,\pi\right]^{\mathrm{2}} \\ $$$${x}\neq{y}\:\Rightarrow\mid{S}\left({x}\right)−{S}\left({y}\right)\mid<\mid{x}−{y}\mid\:. \\ $$