Question Number 39025 by maxmathsup by imad last updated on 01/Jul/18

$${let}\:{f}\left({x}\right)=\:\frac{{cos}\left(\alpha{x}\right)}{{cosx}}\:\:\:\:\left(\mathrm{2}\pi\:{periodic}\:{even}\right) \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{serie}. \\ $$
Commented by math khazana by abdo last updated on 05/Jul/18
![f(x) =(a_0 /2) +Σ_(n=1) ^∞ a_n cos(nx) with a_n = (2/T) ∫_([T]) f(x)cos(nx) dx =(2/(2π)) ∫_(−π) ^π ((cos(αx)cos(nx))/(cosx))dx ⇒ π a_n = (1/2) ∫_(−π) ^π ((cos(n+α)x +cos(n−α)x)/(cosx))dx 2π a_n = ∫_(−π) ^π ((cos(n+α)x)/(cosx))dx +∫_(−π) ^π ((cos(n−α)x)/(cosx))dx let find first I_λ =∫_(−π) ^π ((cos(λx))/(cosx))dx I_λ = Re( ∫_(−π) ^π (e^(iλx) /(cosx))dx) changement e^(ix) =z give ∫_(−π) ^π (e^(iλx) /(cosx)) dx = ∫_(∣z∣=1) ((2z^λ )/(z+z^(−1) )) (dz/(iz)) = ∫_(∣z∣=1) ((−2i z^λ )/(z^2 +1))dz let ϕ(z) = ((−2iz^λ )/(z^(2 ) +1)) ∫_(∣z∣=1) ϕ(z)dz =2iπ{ Res(ϕ,i) +Res(ϕ,−i)} Res(ϕ,i)= ((−2i i^λ )/(2i)) = −i^λ Res(ϕ^](https://www.tinkutara.com/question/Q39305.png)