Question Number 29037 by abdo imad last updated on 03/Feb/18
![let give the sequence (y_n ) /y_0 (x)=1 and y_n (x)= 1+ ∫_0 ^x (y_(n−1) (t))^2 dt , let suppose x∈[0,1] prove that (y_n ) is increasing majored by (1/(1−x)) if y=lim_(n→+∞) y_n prove that y is solution of differencial equation y^, =y^2 and y(o)=1.](https://www.tinkutara.com/question/Q29037.png)
$${let}\:{give}\:{the}\:{sequence}\:\:\left({y}_{{n}} \right)\:/{y}_{\mathrm{0}} \left({x}\right)=\mathrm{1}\:\:{and} \\ $$$${y}_{{n}} \left({x}\right)=\:\mathrm{1}+\:\int_{\mathrm{0}} ^{{x}} \left({y}_{{n}−\mathrm{1}} \left({t}\right)\right)^{\mathrm{2}} {dt}\:,\:{let}\:{suppose}\:{x}\in\left[\mathrm{0},\mathrm{1}\right]\:{prove} \\ $$$${that}\:\left({y}_{{n}} \right)\:{is}\:{increasing}\:{majored}\:{by}\:\frac{\mathrm{1}}{\mathrm{1}−{x}}\:{if}\:{y}={lim}_{{n}\rightarrow+\infty} {y}_{{n}} \\ $$$${prove}\:{that}\:{y}\:{is}\:{solution}\:{of}\:{differencial}\:{equation} \\ $$$${y}^{,} ={y}^{\mathrm{2}} \:{and}\:{y}\left({o}\right)=\mathrm{1}. \\ $$