Question Number 62425 by mathmax by abdo last updated on 21/Jun/19
![let ξ(x) =Σ_(n=1) ^∞ (1/n^x ) with x>1 1) calculate lim_(x→1^+ ) ξ(x) and lim_(x→+∞) ξ(x) 2) prove that ξ(x) =1+2^(−x) +o(2^(−x) ) (x→+∞) 3) prove that ξ is decreasing and convexe fucntion on]1,+∞[](https://www.tinkutara.com/question/Q62425.png)
$${let}\:\xi\left({x}\right)\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{{x}} }\:\:\:\:\:{with}\:{x}>\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{lim}_{{x}\rightarrow\mathrm{1}^{+} } \:\:\xi\left({x}\right)\:\:{and}\:{lim}_{{x}\rightarrow+\infty} \:\:\:\xi\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\xi\left({x}\right)\:=\mathrm{1}+\mathrm{2}^{−{x}} \:+{o}\left(\mathrm{2}^{−{x}} \right)\:\:\:\left({x}\rightarrow+\infty\right) \\ $$$$\left.\mathrm{3}\left.\right)\:{prove}\:{that}\:\xi\:{is}\:{decreasing}\:{and}\:{convexe}\:{fucntion}\:{on}\right]\mathrm{1},+\infty\left[\right. \\ $$