Question Number 50633 by Necxx last updated on 18/Dec/18

$${please}\:{help}\:{integrate}\:\frac{{x}+\mathrm{sin}\:{x}}{\mathrm{1}+\mathrm{cos}\:{x}}{dx} \\ $$
Commented by maxmathsup by imad last updated on 18/Dec/18

$${let}\:{I}\:=\:\int\:\:\frac{{x}+{sinx}}{\mathrm{1}+{cosx}}{dx}\:\:{we}\:{have}\:{I}\:=\int\:\:\frac{{x}}{\mathrm{1}+{cosx}}{dx}\:+\int\:\:\frac{{sinx}}{\mathrm{1}+{cosx}}{dx}\:{but} \\ $$$$\int\:\:\frac{{sinx}}{\mathrm{1}+{cosx}}{dx}\:=\int\:\frac{−{d}\left({cosx}\right)}{\mathrm{1}+{cosx}}\:{dx}=−{ln}\mid\mathrm{1}+{cosx}\mid\:+{c}_{\mathrm{1}} \\ $$$${changement}\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}\:{give} \\ $$$$\int\:\:\:\frac{{x}}{\mathrm{1}+{cosx}}{dx}\:=\:\int\:\:\frac{\mathrm{2}{arctant}}{\mathrm{1}+\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }}\:\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:=\mathrm{4}\:\int\:\:\frac{{arctan}\left({t}\right)}{\mathrm{1}+{t}^{\mathrm{2}} \:+\mathrm{1}−{t}^{\mathrm{2}} }{dt} \\ $$$$=\mathrm{2}\:\int\:\:{arctan}\left({t}\right){dt}\:=_{{by}\:{parts}} \:\:\mathrm{2}\left\{\:\:{t}\:{arctant}−\int\:\frac{{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\:{dt}\right\} \\ $$$$=\mathrm{2}{t}\:{arctan}\left({t}\right)\:−\int\:\:\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:=\mathrm{2}{t}\:{arctan}\left({t}\right)\:−{ln}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\:+{c}_{\mathrm{2}} \\ $$$$=\mathrm{2}{tan}\left(\frac{{x}}{\mathrm{2}}\right)\frac{{x}}{\mathrm{2}}\:−{ln}\left(\mathrm{1}+{tan}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)+{c}_{\mathrm{2}} \right. \\ $$$$={x}\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)−{ln}\left(\mathrm{1}+{tan}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)\right)\:+{c}_{\mathrm{2}} \:\:\:{finally} \\ $$$${I}\:=−{ln}\mid\mathrm{1}+{cosx}\mid\:+{xtan}\left(\frac{{x}}{\mathrm{2}}\right)−{ln}\left(\mathrm{1}+{tan}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)\right)\:+{C} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 18/Dec/18
![∫((x+2sin((x/2))cos((x/2)))/(2cos^2 ((x/2))))dx ∫[((xsec^2 ((x/2)))/2)+tan((x/2))]dx ∫[x.(d/dx)(tan(x/2))+tan((x/2))(dx/dx)]dx ∫(d/dx)(xtan(x/2))dx ∫d(xtan(x/2)) xtan(x/2)+c](https://www.tinkutara.com/question/Q50635.png)
$$\int\frac{{x}+\mathrm{2}{sin}\left(\frac{{x}}{\mathrm{2}}\right){cos}\left(\frac{{x}}{\mathrm{2}}\right)}{\mathrm{2}{cos}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}{dx} \\ $$$$\int\left[\frac{{xsec}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}{\mathrm{2}}+{tan}\left(\frac{{x}}{\mathrm{2}}\right)\right]{dx} \\ $$$$\int\left[{x}.\frac{{d}}{{dx}}\left({tan}\frac{{x}}{\mathrm{2}}\right)+{tan}\left(\frac{{x}}{\mathrm{2}}\right)\frac{{dx}}{{dx}}\right]{dx} \\ $$$$\int\frac{{d}}{{dx}}\left({xtan}\frac{{x}}{\mathrm{2}}\right){dx} \\ $$$$\int{d}\left({xtan}\frac{{x}}{\mathrm{2}}\right) \\ $$$${xtan}\frac{{x}}{\mathrm{2}}+{c} \\ $$
Commented by ajfour last updated on 18/Dec/18

$${Very}\:{Nice}\:{Sir}! \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 18/Dec/18

$${thank}\:{you}\:{sir}… \\ $$
Commented by Necxx last updated on 18/Dec/18

$${thank}\:{you}\:{so}\:{much}\:{sir} \\ $$