Question Number 162535 by mnjuly1970 last updated on 30/Dec/21

$$ \\ $$$$\:\:\:\:\:\mathrm{prove}\:\mathrm{that} \\ $$$$\Omega\:=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:\:\mathrm{ln}\:\left(\frac{\mathrm{1}}{{x}}\:\right)}{\:{x}^{\:\mathrm{4}} \:+\:\mathrm{17}{x}^{\:\mathrm{2}} \:+\:\mathrm{16}}\:{dx}\overset{?} {=}\:\frac{\pi}{\mathrm{60}}\:\mathrm{ln}\left(\mathrm{2}\right) \\ $$$$ \\ $$
Commented by Ar Brandon last updated on 30/Dec/21

$$\mathrm{Synthax}\:\mathrm{error},\:\mathrm{Sir}.\:\mathrm{Your}\:{dx}\:\mathrm{is}\:\mathrm{missing}. \\ $$Haha π
π
Commented by amin96 last updated on 30/Dec/21

$$ \\ $$very big mistakeππ
Commented by mnjuly1970 last updated on 30/Dec/21

$$\:{yes}\:{you}\:{are}\:{right}\:{sir}\:\:… \\ $$
Answered by Ar Brandon last updated on 24/Mar/22

$$\Omega=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{ln}\left(\frac{\mathrm{1}}{{x}}\right)}{{x}^{\mathrm{4}} +\mathrm{17}{x}^{\mathrm{2}} +\mathrm{16}}{dx}=β\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{ln}{x}}{{x}^{\mathrm{4}} +\mathrm{17}{x}^{\mathrm{2}} +\mathrm{16}}{dx} \\ $$$$\varphi\left({z}\right)=\frac{\left(\mathrm{ln}{z}\right)^{\mathrm{2}} }{{z}^{\mathrm{4}} +\mathrm{17}{z}^{\mathrm{2}} +\mathrm{16}}\:,\mathrm{poles}:\left({z}^{\mathrm{2}} +\mathrm{16}\right)\left({z}^{\mathrm{2}} +\mathrm{1}\right)=\mathrm{0}\Rightarrow{z}_{\mathrm{1}} =\mathrm{4}{e}^{\frac{\pi}{\mathrm{2}}{i}} ,{z}_{\mathrm{2}} =\mathrm{4}{e}^{β\frac{\pi}{\mathrm{2}}{i}} ,{z}_{\mathrm{3}} ={e}^{\frac{\pi}{\mathrm{2}}{i}} ,{z}_{\mathrm{4}} ={e}^{β\frac{\pi}{\mathrm{2}}{i}} \\ $$$$\Omega=β\frac{\mathrm{1}}{\mathrm{2}}{Re}\left({Res}\left(\varphi,\:{z}_{\mathrm{1}} \right)+{Res}\left(\varphi,\:{z}_{\mathrm{2}} \right)+{Res}\left(\varphi,\:{z}_{\mathrm{3}} \right)+{Res}\left(\varphi,\:{z}_{\mathrm{4}} \right)\right) \\ $$$${Res}\:\left(\varphi,\:{z}_{\mathrm{1}} \right)=\underset{{z}\rightarrow{z}_{\mathrm{1}} } {\mathrm{lim}}\left(\frac{\left(\mathrm{ln}{z}\right)^{\mathrm{2}} }{\left({z}β{z}_{\mathrm{2}} \right)\left({z}β{z}_{\mathrm{3}} \right)\left({z}β{z}_{\mathrm{4}} \right)}\right)=\frac{\left(\mathrm{ln4}+\frac{\pi}{\mathrm{2}}{i}\right)^{\mathrm{2}} }{\left(\mathrm{8}{i}\right)\left(\mathrm{3}{i}\right)\left(\mathrm{5}{i}\right)}=\frac{{i}}{\mathrm{120}}\left(\mathrm{ln}^{\mathrm{2}} \mathrm{4}β\frac{\pi^{\mathrm{2}} }{\mathrm{4}}+{i}\pi\mathrm{ln4}\right) \\ $$$${Res}\left(\varphi,\:{z}_{\mathrm{2}} \right)=\underset{{z}\rightarrow{z}_{\mathrm{2}} } {\mathrm{lim}}\left(\frac{\left(\mathrm{ln}{z}\right)^{\mathrm{2}} }{\left({z}β{z}_{\mathrm{1}} \right)\left({z}β{z}_{\mathrm{3}} \right)\left({z}β{z}_{\mathrm{4}} \right)}\right)=\frac{\left(\mathrm{ln4}β\frac{\pi}{\mathrm{2}}{i}\right)^{\mathrm{2}} }{\left(β\mathrm{8}{i}\right)\left(β\mathrm{5}{i}\right)\left(β\mathrm{3}{i}\right)}=β\frac{{i}}{\mathrm{120}}\left(\mathrm{ln}^{\mathrm{2}} \mathrm{4}+\frac{\pi^{\mathrm{2}} }{\mathrm{4}}β{i}\pi\mathrm{ln4}\right) \\ $$$${Res}\left(\varphi,\:{z}_{\mathrm{3}} \right)=\underset{{z}\rightarrow{z}_{\mathrm{3}} } {\mathrm{lim}}\left(\frac{\left(\mathrm{ln}{z}\right)^{\mathrm{2}} }{\left({z}β{z}_{\mathrm{1}} \right)\left({z}β{z}_{\mathrm{2}} \right)\left({z}β{z}_{\mathrm{4}} \right)}\right)=\frac{\left(\frac{\pi}{\mathrm{2}}{i}\right)^{\mathrm{2}} }{\left(β\mathrm{3}{i}\right)\left(\mathrm{5}{i}\right)\left(\mathrm{2}{i}\right)}=\frac{{i}}{\mathrm{30}}\left(\frac{\pi^{\mathrm{2}} }{\mathrm{4}}\right)={i}\frac{\pi^{\mathrm{2}} }{\mathrm{120}} \\ $$$${Res}\left(\varphi,{z}_{\mathrm{4}} \right)=\underset{{z}\rightarrow{z}_{\mathrm{4}} } {\mathrm{lim}}\left(\frac{\left(\mathrm{ln}{z}\right)^{\mathrm{2}} }{\left({z}β{z}_{\mathrm{1}} \right)\left({z}β{z}_{\mathrm{2}} \right)\left({z}β{z}_{\mathrm{3}} \right)}\right)=\frac{\left(β\frac{\pi}{\mathrm{2}}{i}\right)^{\mathrm{2}} }{\left(β\mathrm{5}{i}\right)\left(\mathrm{3}{i}\right)\left(β\mathrm{2}{i}\right)}=β\frac{{i}}{\mathrm{30}}\left(\frac{\pi^{\mathrm{2}} }{\mathrm{4}}\right)=β{i}\frac{\pi^{\mathrm{2}} }{\mathrm{120}} \\ $$$$\Omega=β\frac{\mathrm{1}}{\mathrm{2}}\left(β\frac{\pi\mathrm{ln4}}{\mathrm{120}}β\frac{\pi\mathrm{ln4}}{\mathrm{120}}\right)=\frac{\pi\mathrm{ln4}}{\mathrm{120}}=\frac{\pi}{\mathrm{60}}\mathrm{ln}\left(\mathrm{2}\right) \\ $$
Commented by mnjuly1970 last updated on 30/Dec/21

$$\:\:\:{very}\:{nice}\:{solution}\:..{residues}\:{theory}.. \\ $$$$\:\:\:\:{thanks}\:{alot}\:{sir}\:{brandon}.. \\ $$
Answered by mindispower last updated on 30/Dec/21
![=ββ«_0 ^β β((ln(x))/((x^2 +16)(x^2 +1)))dx=β(1/(15))β«_0 ^β ((ln(x))/(x^2 +1))+((ln(x))/(x^2 +16))dx =(1/(15))(ββ«_0 ^β ((ln(x))/(x^2 +1))dx+β«((ln(4y))/(16(y^2 +1)))4y =β(3/(60))β«_0 ^β ((ln(x))/(1+x^2 ))+((ln(4))/(60))β«_0 ^β (dx/(1+x^2 )) β«_0 ^β ((ln(x))/(1+x^2 ))dx,xβ(1/x)β=ββ«_0 ^β ((ln(x))/(1+x^2 ))dx ββ«_0 ^β ((ln(x))/(1+x^2 ))dx=0 Ξ©=((ln(4))/(60))β«_0 ^β (dx/(1+x^2 ))=((ln(4))/(60))lim_(xββ) [tan^(β1) (z)]_0 ^x =((ln(4))/(60)).(Ο/2)=((Οln(2))/(60))](https://www.tinkutara.com/question/Q162600.png)
$$=β\int_{\mathrm{0}} ^{\infty} β\frac{{ln}\left({x}\right)}{\left({x}^{\mathrm{2}} +\mathrm{16}\right)\left({x}^{\mathrm{2}} +\mathrm{1}\right)}{dx}=β\frac{\mathrm{1}}{\mathrm{15}}\int_{\mathrm{0}} ^{\infty} \frac{{ln}\left({x}\right)}{{x}^{\mathrm{2}} +\mathrm{1}}+\frac{{ln}\left({x}\right)}{{x}^{\mathrm{2}} +\mathrm{16}}{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{15}}\left(β\int_{\mathrm{0}} ^{\infty} \frac{{ln}\left({x}\right)}{{x}^{\mathrm{2}} +\mathrm{1}}{dx}+\int\frac{{ln}\left(\mathrm{4}{y}\right)}{\mathrm{16}\left({y}^{\mathrm{2}} +\mathrm{1}\right)}\mathrm{4}{y}\right. \\ $$$$=β\frac{\mathrm{3}}{\mathrm{60}}\int_{\mathrm{0}} ^{\infty} \frac{{ln}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }+\frac{{ln}\left(\mathrm{4}\right)}{\mathrm{60}}\int_{\mathrm{0}} ^{\infty} \frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{ln}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx},{x}\rightarrow\frac{\mathrm{1}}{{x}}\Rightarrow=β\int_{\mathrm{0}} ^{\infty} \frac{{ln}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\infty} \frac{{ln}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}=\mathrm{0} \\ $$$$\Omega=\frac{\mathrm{ln}\left(\mathrm{4}\right)}{\mathrm{60}}\int_{\mathrm{0}} ^{\infty} \frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} }=\frac{{ln}\left(\mathrm{4}\right)}{\mathrm{60}}\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left[\mathrm{tan}^{β\mathrm{1}} \left({z}\right)\right]_{\mathrm{0}} ^{{x}} \\ $$$$=\frac{{ln}\left(\mathrm{4}\right)}{\mathrm{60}}.\frac{\pi}{\mathrm{2}}=\frac{\pi{ln}\left(\mathrm{2}\right)}{\mathrm{60}} \\ $$