Question Number 185776 by TUN last updated on 27/Jan/23

Answered by MJS_new last updated on 27/Jan/23

$${n}!\sim\frac{{n}^{{n}} }{\mathrm{e}^{{n}} }\sqrt{\mathrm{2}\pi{n}} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\left(\mathrm{2}{n}\right)!}{{n}!{n}^{{n}} }\right)^{\mathrm{1}/{n}} \:=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{4}×\mathrm{2}^{\mathrm{1}/\left(\mathrm{2}{n}\right)} }{\mathrm{e}}\:=\frac{\mathrm{4}}{\mathrm{e}} \\ $$
Answered by CElcedricjunior last updated on 27/Jan/23
![lim_(n→∞) ((((2n)!)/(n!n^n )))^(1/n) =lim_(n→∞) (((Π_(k=1) ^(2n) k)/(Π_(k=1) ^n k×n^n )))^(1/n) =lim_(n→∞) (((Π_(k=n+1) ^(2n) k)/n^n ))^(1/n) =lim_(n→∞) (Π_(k=n+1) ^(2n) ((k/n)))^(1/n) =>en applicant ln lim_(n→∞) (1/n)ln(Π_(k=n+1) ^(2n) ((k/n))) =lim_(n→∞) (1/n)[ln((1+n)/n)+ln((2+n)/n)+.....ln((2n)/n)] =lim_(n→∞) (1/n)Σ_(k=n+1) ^(2n) ln((k/n)) posons { ((p=k−n−1 pour k=n+1=>p=0)),((pour k=2n =>p=n−1)) :} =lim_(n→∞) (1/n)Σ_(p=0) ^(n−1) ln(((p+n+1)/n)) =lim_(n→∞) (1/n)Σ_(p=1) ^n ln(1+(p/n))=lim_(n→∞) ((b−a)/n)Σ_(p=1) ^n f(a+((b−a)/n)p) avec a=1;b=2;f(x)=ln(x) d′apre^](https://www.tinkutara.com/question/Q185797.png)