Question Number 187085 by Rupesh123 last updated on 13/Feb/23

Answered by witcher3 last updated on 14/Feb/23
![S_n =Σ_(k=1) ^n (1/(n+k)) S_(n+1) −S_n =Σ_(k=1) ^(n+1) (1/(n+1+k))−Σ_(k=1) ^n (1/(n+k)) =(1/(2n+1))+(1/(2n+2))−(1/n) =(((2n+2)n+n(2n+1)−(2n+2)(2n+1))/(2(n+1)n(2n+1))) =((−3n−2)/(2n(n+1)(2n+1)))<0 s_n ≤Σ_(k=1) ^n (1/n)=1 s_n cv (2)T_n =Σ_(k=1) ^n (1/( (√(2n^2 +k)))) ∀k∈[1,n] (1/( (√(2n^2 +n))))≤(1/( (√(2n^2 +k))))≤(1/( (√(2n^2 +1)))) ⇒(n/( (√(2n^2 +n))))→(1/( (√n)))≤T_n ≤(n/( (√(2n^2 +1))))→(1/( (√2))) lim_(n→∞) T_n =(1/( (√n)))](https://www.tinkutara.com/question/Q187154.png)
$$\mathrm{S}_{\mathrm{n}} =\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{n}+\mathrm{k}} \\ $$$$\mathrm{S}_{\mathrm{n}+\mathrm{1}} −\mathrm{S}_{\mathrm{n}} =\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}+\mathrm{1}} {\sum}}\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}+\mathrm{k}}−\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{n}+\mathrm{k}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2n}+\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{2n}+\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{n}} \\ $$$$=\frac{\left(\mathrm{2n}+\mathrm{2}\right)\mathrm{n}+\mathrm{n}\left(\mathrm{2n}+\mathrm{1}\right)−\left(\mathrm{2n}+\mathrm{2}\right)\left(\mathrm{2n}+\mathrm{1}\right)}{\mathrm{2}\left(\mathrm{n}+\mathrm{1}\right)\mathrm{n}\left(\mathrm{2n}+\mathrm{1}\right)} \\ $$$$=\frac{−\mathrm{3n}−\mathrm{2}}{\mathrm{2n}\left(\mathrm{n}+\mathrm{1}\right)\left(\mathrm{2n}+\mathrm{1}\right)}<\mathrm{0} \\ $$$$\mathrm{s}_{\mathrm{n}} \leqslant\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{n}}=\mathrm{1} \\ $$$$\mathrm{s}_{\mathrm{n}} \:\:\mathrm{cv} \\ $$$$\left(\mathrm{2}\right)\mathrm{T}_{\mathrm{n}} =\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\:\sqrt{\mathrm{2n}^{\mathrm{2}} +\mathrm{k}}} \\ $$$$\forall\mathrm{k}\in\left[\mathrm{1},\mathrm{n}\right]\:\:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2n}^{\mathrm{2}} +\mathrm{n}}}\leqslant\frac{\mathrm{1}}{\:\sqrt{\mathrm{2n}^{\mathrm{2}} +\mathrm{k}}}\leqslant\frac{\mathrm{1}}{\:\sqrt{\mathrm{2n}^{\mathrm{2}} +\mathrm{1}}} \\ $$$$\Rightarrow\frac{\mathrm{n}}{\:\sqrt{\mathrm{2n}^{\mathrm{2}} +\mathrm{n}}}\rightarrow\frac{\mathrm{1}}{\:\sqrt{\mathrm{n}}}\leqslant\mathrm{T}_{\mathrm{n}} \leqslant\frac{\mathrm{n}}{\:\sqrt{\mathrm{2n}^{\mathrm{2}} +\mathrm{1}}}\rightarrow\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}T}_{\mathrm{n}} =\frac{\mathrm{1}}{\:\sqrt{\mathrm{n}}} \\ $$$$ \\ $$