Question Number 37018 by behi83417@gmail.com last updated on 08/Jun/18

Commented by math khazana by abdo last updated on 08/Jun/18

$$\left.\mathrm{1}\right)\:{let}\:{I}\:=\:\int\:\:\:\frac{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{\mathrm{1}+{x}}{dx}\:{changement}\:{x}={sht}\:{give} \\ $$$${I}\:=\:\int\:\:\:\:\frac{{ch}\left({t}\right)}{\mathrm{1}+{sh}\left({t}\right)}{ch}\left({t}\right){dt}=\:\int\:\:\:\frac{{ch}^{\mathrm{2}} \left({t}\right){dt}}{\mathrm{1}+{sh}\left({t}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:\int\:\:\:\:\frac{\mathrm{1}+{ch}\left(\mathrm{2}{t}\right)}{\mathrm{1}+{sh}\left({t}\right)}{dt}\:=\frac{\mathrm{1}}{\mathrm{2}}\:\int\:\:\:\frac{\mathrm{1}\:+\frac{{e}^{\mathrm{2}{t}} \:+{e}^{−\mathrm{2}{t}} }{\mathrm{2}}}{\mathrm{1}+\frac{{e}^{{t}} \:−{e}^{−{t}} }{\mathrm{2}}}{dt} \\ $$$$\mathrm{2}{I}\:\:=\:\:\int\:\:\:\frac{\mathrm{2}\:+{e}^{\mathrm{2}{t}} \:+{e}^{−\mathrm{2}{t}} }{\mathrm{2}\:+{e}^{{t}} \:−{e}^{−{t}} }{dt}\: \\ $$$$=_{{e}^{{t}} ={u}} \:\:\:\:\int\:\:\:\:\frac{\mathrm{2}\:\:+{u}^{\mathrm{2}} \:+\frac{\mathrm{1}}{{u}^{\mathrm{2}} }}{\mathrm{2}\:+{u}\:−\frac{\mathrm{1}}{{u}}}\:{du}\:=\int\:\:\:\:\frac{\mathrm{2}{u}^{\mathrm{2}} \:+{u}^{\mathrm{4}} \:+\mathrm{1}}{\mathrm{2}{u}\:+{u}^{\mathrm{2}} \:−\mathrm{1}}\frac{\mathrm{1}}{{u}}{du} \\ $$$$=\int\:\:\:\:\frac{{u}^{\mathrm{4}} \:+\mathrm{2}{u}^{\mathrm{2}} \:+\mathrm{1}}{{u}^{\mathrm{3}} \:+\mathrm{2}{u}^{\mathrm{2}} \:−{u}}{du} \\ $$$$=\:\int\:\:\:\frac{{u}\left({u}^{\mathrm{3}} \:+\mathrm{2}{u}^{\mathrm{2}} −{u}\right)\:−\mathrm{2}{u}^{\mathrm{3}} \:+{u}^{\mathrm{2}} \:+\mathrm{2}{u}^{\mathrm{2}} \:+\mathrm{1}}{{u}^{\mathrm{3}} \:+\mathrm{2}{u}^{\mathrm{2}} \:−{u}}\:{du} \\ $$$$=\:\frac{{u}^{\mathrm{2}} }{\mathrm{2}}\:+\int\:\:\:\frac{−\mathrm{2}{u}^{\mathrm{3}} \:+\mathrm{3}{u}^{\mathrm{2}} \:+\mathrm{1}}{{u}^{\mathrm{3}} \:+\mathrm{2}{u}^{\mathrm{2}} \:−{u}}{du} \\ $$$$=\frac{{u}^{\mathrm{2}} }{\mathrm{2}}\:+\int\:\:\:\frac{−\mathrm{2}\left(\:{u}^{\mathrm{3}} \:+\mathrm{2}{u}^{\mathrm{2}} \:−{u}\right)\:+\mathrm{4}{u}^{\mathrm{2}} \:−\mathrm{2}{u}\:+\mathrm{3}{u}^{\mathrm{2}} \:+\mathrm{1}}{{u}^{\mathrm{3}} \:+\mathrm{2}{u}^{\mathrm{2}} \:−{u}}{du} \\ $$$$=\frac{{u}^{\mathrm{2}} }{\mathrm{2}}\:−\mathrm{2}{u}\:\:+\int\:\:\:\:\frac{\mathrm{7}{u}^{\mathrm{2}} \:−\mathrm{2}{u}\:+\mathrm{1}}{{u}\left({u}^{\mathrm{2}} \:+\mathrm{2}{u}−\mathrm{1}\right)}{du}\:{let}?{decompose} \\ $$$${F}\left({u}\right)=\:\frac{\mathrm{7}{u}^{\mathrm{2}} −\mathrm{2}{u}\:+\mathrm{1}}{{u}\left({u}^{\mathrm{2}} \:+\mathrm{2}{u}−\mathrm{1}\right)}\:{roots}\:{of}\:{u}^{\mathrm{2}} \:+\mathrm{2}{u}−\mathrm{1} \\ $$$$\Delta^{'} \:=\:\mathrm{2}\:\Rightarrow\:{u}_{\mathrm{1}} =−\mathrm{1}+\sqrt{\mathrm{2}}\:\:{and}\:{u}_{\mathrm{2}} =−\mathrm{1}−\sqrt{\mathrm{2}} \\ $$$${F}\left({u}\right)\:=\:\frac{\mathrm{7}{u}^{\mathrm{2}} \:−\mathrm{2}{u}\:+\mathrm{1}}{{u}\left({u}−{u}_{\mathrm{1}} \right)\left({u}−{u}_{\mathrm{2}} \right)}\:=\:\frac{{a}}{{u}}\:\:+\frac{{b}}{{u}−{u}_{\mathrm{1}} }\:+\frac{{c}}{{u}−{u}_{\mathrm{2}} } \\ $$$${its}\:{simple}\:{to}\:{find}\:{a}\:,{b}\:{and}\:{c}\:{so} \\ $$$$\int\:{F}\left({u}\right){du}\:={aln}\mid{u}\mid\:+{bln}\mid{u}−{u}_{\mathrm{1}} \mid\:+{cln}\mid{u}−{u}_{\mathrm{2}} \mid\:+{C} \\ $$$$={at}\:+{b}\:{ln}\mid\:{e}^{{t}} \:−{u}_{\mathrm{1}} \mid\:+{c}\:{ln}\mid\:{e}^{{t}} \:−{u}_{\mathrm{2}} \mid\:+{C} \\ $$$$={aln}\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:\right)\:+{bln}\mid\:{x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }−{u}_{\mathrm{1}} \mid \\ $$$$+{c}\:{ln}\mid\:{x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:−{u}_{\mathrm{2}} \mid\:+{C}\:=\:\mathrm{2}{I}\:\Rightarrow \\ $$$${I}\:=\frac{{a}}{\mathrm{2}}{ln}\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)\:+\frac{{b}}{\mathrm{2}}{ln}\mid{x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:−{u}_{\mathrm{1}} \mid \\ $$$$+\frac{{c}}{\mathrm{2}}{ln}\mid{x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:−{u}_{\mathrm{2}} \mid\:+{C}\:. \\ $$
Commented by behi83417@gmail.com last updated on 08/Jun/18

$$\int\:\frac{\sqrt{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }}{\mathrm{1}+\boldsymbol{{x}}}\boldsymbol{{dx}}= \\ $$$$\sqrt{\mathrm{2}}\boldsymbol{{ln}}\left(\frac{\sqrt{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }−\boldsymbol{{x}}−\sqrt{\mathrm{2}}−\mathrm{1}}{\:\sqrt{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }−\boldsymbol{{x}}+\sqrt{\mathrm{2}}−\mathrm{1}}\right)+\boldsymbol{{ln}}\left(\sqrt{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }−\boldsymbol{{x}}\right)+\sqrt{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }+\boldsymbol{{C}} \\ $$
Commented by MJS last updated on 08/Jun/18
![sorry but this is wrong ∫ ((√(1+x^2 ))/(1+x))dx= [t=arctan x → dx=sec^2 t dt] =∫((sec^2 t (√(1+tan^2 t)))/(1+tan t))dt=∫((sec^3 t)/(1+tan t))= [Weierstrass: u=tan (t/2) → dt=((2du)/(1+u^2 ))] =−2∫(((u^2 +1)^2 )/((u−1)^2 (u+1)^2 (u^2 −2u−1)))du= =−4∫(du/(u^2 −2u−1))+ +∫(du/((u−1)^2 ))−∫(du/((u+1)^2 ))+ +∫(du/(u−1))−∫(du/(u+1))= =−(√2)∫(du/(u−(√2)−1))+(√2)∫(du/(u+(√2)−1))− −(1/(u−1))+(1/(u+1))+ +ln(u−1)−ln(u+1)= =−(√2)ln(u−(√2)−1)+(√2)ln(u+(√2)−1)+ +(2/(1−u^2 ))+ln ((u−1)/(u+1))= =(√2)ln ((u+(√2)−1)/(u−(√2)−1))+ln ((u−1)/(u+1))+(2/(1−u^2 ))= =(√2)ln ((tan (t/2) +(√2)−1)/(tan (t/2) −(√2)−1))+ln ((tan (t/2) −1)/(tan (t/2) +1))+(2/(1−tan^2 (t/2)))= [tan ((arctan x)/2)=(((√(x^2 +1))−1)/x)] =(√2)ln (((√(x^2 +1))−(1−(√2))x−1)/( (√(x^2 +1))−(1+(√2))x−1))+ln (((√(x^2 +1))−x−1)/( (√(x^2 +1))+x−1))+(x^2 /( (√(x^2 +1))−1))= =(√2)ln (((√(x^2 +1))−(1−(√2))x−1)/( (√(x^2 +1))−(1+(√2))x−1))+ln(x−(√(x^2 +1)))+(√(x^2 +1))+1= =(√2)ln (((1−(√2))(x−1)−(2−(√2))(√(x^2 +1)))/(x+1))+ln(x−(√(x^2 +1)))+(√(x^2 +1))+C](https://www.tinkutara.com/question/Q37046.png)
$$\mathrm{sorry}\:\mathrm{but}\:\mathrm{this}\:\mathrm{is}\:\mathrm{wrong} \\ $$$$\int\:\frac{\sqrt{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }}{\mathrm{1}+\boldsymbol{{x}}}\boldsymbol{{dx}}= \\ $$$$\:\:\:\:\:\:\:\:\:\:\left[{t}=\mathrm{arctan}\:{x}\:\rightarrow\:{dx}=\mathrm{sec}^{\mathrm{2}} \:{t}\:{dt}\right] \\ $$$$=\int\frac{\mathrm{sec}^{\mathrm{2}} \:{t}\:\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:{t}}}{\mathrm{1}+\mathrm{tan}\:{t}}{dt}=\int\frac{\mathrm{sec}^{\mathrm{3}} \:{t}}{\mathrm{1}+\mathrm{tan}\:{t}}= \\ $$$$\:\:\:\:\:\:\:\:\:\:\left[\mathrm{Weierstrass}:\:{u}=\mathrm{tan}\:\frac{{t}}{\mathrm{2}}\:\rightarrow\:{dt}=\frac{\mathrm{2}{du}}{\mathrm{1}+{u}^{\mathrm{2}} }\right] \\ $$$$=−\mathrm{2}\int\frac{\left({u}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{\left({u}−\mathrm{1}\right)^{\mathrm{2}} \left({u}+\mathrm{1}\right)^{\mathrm{2}} \left({u}^{\mathrm{2}} −\mathrm{2}{u}−\mathrm{1}\right)}{du}= \\ $$$$=−\mathrm{4}\int\frac{{du}}{{u}^{\mathrm{2}} −\mathrm{2}{u}−\mathrm{1}}+ \\ $$$$\:\:\:\:\:+\int\frac{{du}}{\left({u}−\mathrm{1}\right)^{\mathrm{2}} }−\int\frac{{du}}{\left({u}+\mathrm{1}\right)^{\mathrm{2}} }+ \\ $$$$\:\:\:\:\:\:\:\:\:\:+\int\frac{{du}}{{u}−\mathrm{1}}−\int\frac{{du}}{{u}+\mathrm{1}}= \\ $$$$=−\sqrt{\mathrm{2}}\int\frac{{du}}{{u}−\sqrt{\mathrm{2}}−\mathrm{1}}+\sqrt{\mathrm{2}}\int\frac{{du}}{{u}+\sqrt{\mathrm{2}}−\mathrm{1}}− \\ $$$$\:\:\:\:\:−\frac{\mathrm{1}}{{u}−\mathrm{1}}+\frac{\mathrm{1}}{{u}+\mathrm{1}}+ \\ $$$$\:\:\:\:\:\:\:\:\:\:+\mathrm{ln}\left({u}−\mathrm{1}\right)−\mathrm{ln}\left({u}+\mathrm{1}\right)= \\ $$$$=−\sqrt{\mathrm{2}}\mathrm{ln}\left({u}−\sqrt{\mathrm{2}}−\mathrm{1}\right)+\sqrt{\mathrm{2}}\mathrm{ln}\left({u}+\sqrt{\mathrm{2}}−\mathrm{1}\right)+ \\ $$$$\:\:\:\:\:+\frac{\mathrm{2}}{\mathrm{1}−{u}^{\mathrm{2}} }+\mathrm{ln}\:\frac{{u}−\mathrm{1}}{{u}+\mathrm{1}}= \\ $$$$=\sqrt{\mathrm{2}}\mathrm{ln}\:\frac{{u}+\sqrt{\mathrm{2}}−\mathrm{1}}{{u}−\sqrt{\mathrm{2}}−\mathrm{1}}+\mathrm{ln}\:\frac{{u}−\mathrm{1}}{{u}+\mathrm{1}}+\frac{\mathrm{2}}{\mathrm{1}−{u}^{\mathrm{2}} }= \\ $$$$=\sqrt{\mathrm{2}}\mathrm{ln}\:\frac{\mathrm{tan}\:\frac{{t}}{\mathrm{2}}\:+\sqrt{\mathrm{2}}−\mathrm{1}}{\mathrm{tan}\:\frac{{t}}{\mathrm{2}}\:−\sqrt{\mathrm{2}}−\mathrm{1}}+\mathrm{ln}\:\frac{\mathrm{tan}\:\frac{{t}}{\mathrm{2}}\:−\mathrm{1}}{\mathrm{tan}\:\frac{{t}}{\mathrm{2}}\:+\mathrm{1}}+\frac{\mathrm{2}}{\mathrm{1}−\mathrm{tan}^{\mathrm{2}} \:\frac{{t}}{\mathrm{2}}}= \\ $$$$\:\:\:\:\:\:\:\:\:\:\left[\mathrm{tan}\:\frac{\mathrm{arctan}\:{x}}{\mathrm{2}}=\frac{\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}−\mathrm{1}}{{x}}\right] \\ $$$$=\sqrt{\mathrm{2}}\mathrm{ln}\:\frac{\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}−\left(\mathrm{1}−\sqrt{\mathrm{2}}\right){x}−\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}−\left(\mathrm{1}+\sqrt{\mathrm{2}}\right){x}−\mathrm{1}}+\mathrm{ln}\:\frac{\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}−{x}−\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}+{x}−\mathrm{1}}+\frac{{x}^{\mathrm{2}} }{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}−\mathrm{1}}= \\ $$$$=\sqrt{\mathrm{2}}\mathrm{ln}\:\frac{\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}−\left(\mathrm{1}−\sqrt{\mathrm{2}}\right){x}−\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}−\left(\mathrm{1}+\sqrt{\mathrm{2}}\right){x}−\mathrm{1}}+\mathrm{ln}\left({x}−\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\right)+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}+\mathrm{1}= \\ $$$$=\sqrt{\mathrm{2}}\mathrm{ln}\:\frac{\left(\mathrm{1}−\sqrt{\mathrm{2}}\right)\left({x}−\mathrm{1}\right)−\left(\mathrm{2}−\sqrt{\mathrm{2}}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}{{x}+\mathrm{1}}+\mathrm{ln}\left({x}−\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\right)+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}+{C} \\ $$
Answered by MJS last updated on 08/Jun/18
![2) ∫((√x)/(x^3 +x^2 +x+1))dx= [t=(√x) → dx=2(√x)dt] =2∫(t^2 /(t^6 +t^4 +t^2 +1))dt=2∫(t^2 /((t^4 +1)(t^2 +1)))dt= =∫((t^2 +1)/(t^4 +1))dt−∫(dt/(t^2 +1))=∫((t^2 +1)/(t^4 +1))dt−arctan t= ∫((t^2 +1)/(t^4 +1))dt=∫((t^2 +1)/((t^2 −(√2)t+1)(t^2 +(√2)t+1)))dt= =(1/2)∫(dt/(t^2 −(√2)t+1))+(1/2)∫(dt/(t^2 +(√2)t+1))= =(1/2)∫(dt/((t−((√2)/2))^2 +(1/2)))+(1/2)∫(dt/((t+((√2)/2))^2 +(1/2)))= [u=(√2)t±1 → dt=((√2)/2)du] =((√2)/2)∫(du_− /(u_− ^2 +1))+((√2)/2)∫(du_+ /(u_+ ^2 +1))= =((√2)/2)arctan u_− +((√2)/2)arctan u_+ = =((√2)/2)arctan((√2)t−1)+((√2)/2)arctan((√2)t+1) =((√2)/2)arctan((√2)t−1)+((√2)/2)arctan((√2)t+1)−arctan t= =((√2)/2)(arctan((√(2x))−1)+arctan((√(2x))+1))−arctan (√x)+C](https://www.tinkutara.com/question/Q37027.png)
$$\left.\mathrm{2}\right) \\ $$$$\int\frac{\sqrt{{x}}}{{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +{x}+\mathrm{1}}{dx}= \\ $$$$\:\:\:\:\:\:\:\:\:\:\left[{t}=\sqrt{{x}}\:\rightarrow\:{dx}=\mathrm{2}\sqrt{{x}}{dt}\right] \\ $$$$=\mathrm{2}\int\frac{{t}^{\mathrm{2}} }{{t}^{\mathrm{6}} +{t}^{\mathrm{4}} +{t}^{\mathrm{2}} +\mathrm{1}}{dt}=\mathrm{2}\int\frac{{t}^{\mathrm{2}} }{\left({t}^{\mathrm{4}} +\mathrm{1}\right)\left({t}^{\mathrm{2}} +\mathrm{1}\right)}{dt}= \\ $$$$=\int\frac{{t}^{\mathrm{2}} +\mathrm{1}}{{t}^{\mathrm{4}} +\mathrm{1}}{dt}−\int\frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{1}}=\int\frac{{t}^{\mathrm{2}} +\mathrm{1}}{{t}^{\mathrm{4}} +\mathrm{1}}{dt}−\mathrm{arctan}\:{t}= \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\int\frac{{t}^{\mathrm{2}} +\mathrm{1}}{{t}^{\mathrm{4}} +\mathrm{1}}{dt}=\int\frac{{t}^{\mathrm{2}} +\mathrm{1}}{\left({t}^{\mathrm{2}} −\sqrt{\mathrm{2}}{t}+\mathrm{1}\right)\left({t}^{\mathrm{2}} +\sqrt{\mathrm{2}}{t}+\mathrm{1}\right)}{dt}= \\ $$$$\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{{t}^{\mathrm{2}} −\sqrt{\mathrm{2}}{t}+\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{{t}^{\mathrm{2}} +\sqrt{\mathrm{2}}{t}+\mathrm{1}}= \\ $$$$\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{\left({t}−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}}+\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{\left({t}+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}}= \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[{u}=\sqrt{\mathrm{2}}{t}\pm\mathrm{1}\:\rightarrow\:{dt}=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}{du}\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\int\frac{{du}_{−} }{{u}_{−} ^{\mathrm{2}} +\mathrm{1}}+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\int\frac{{du}_{+} }{{u}_{+} ^{\mathrm{2}} +\mathrm{1}}= \\ $$$$\:\:\:\:\:\:\:\:\:\:=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{arctan}\:{u}_{−} \:+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{arctan}\:{u}_{+} = \\ $$$$\:\:\:\:\:\:\:\:\:\:=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{arctan}\left(\sqrt{\mathrm{2}}{t}−\mathrm{1}\right)+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{arctan}\left(\sqrt{\mathrm{2}}{t}+\mathrm{1}\right) \\ $$$$ \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{arctan}\left(\sqrt{\mathrm{2}}{t}−\mathrm{1}\right)+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{arctan}\left(\sqrt{\mathrm{2}}{t}+\mathrm{1}\right)−\mathrm{arctan}\:{t}= \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left(\mathrm{arctan}\left(\sqrt{\mathrm{2}{x}}−\mathrm{1}\right)+\mathrm{arctan}\left(\sqrt{\mathrm{2}{x}}+\mathrm{1}\right)\right)−\mathrm{arctan}\:\sqrt{{x}}+{C} \\ $$
Answered by MJS last updated on 08/Jun/18
![1) I messed around a little, found this: ∫((√(1+x^2 ))/(1+x))dx= =(√2)arcsinh(−((1−x)/(∣1+x∣)))−arcsinh x +(√(1+x^2 ))+C let me explain: ∫((√(1+x^2 ))/(1+x))dx=∫((1+x^2 )/((1+x)(√(1+x^2 ))))dx=∫((2+x^2 −1)/((1+x)(√(1+x^2 ))))dx= =2∫(dx/((1+x)(√(1+x^2 ))))−∫((1−x^2 )/((1+x)(√(1+x^2 ))))dx= =2∫(dx/((1+x)(√(1+x^2 ))))−∫(((1−x)(1+x))/((1+x)(√(1+x^2 ))))dx= =2∫(dx/((1+x)(√(1+x^2 ))))−∫((1−x)/( (√(1+x^2 ))))dx= =2∫(dx/((1+x)(√(1+x^2 ))))−∫(dx/( (√(1+x^2 ))))+∫(x/( (√(1+x^2 ))))dx= [the 2^(nd) and 3^(rd) ones are standard integrals] =2∫(dx/((1+x)(√(1+x^2 ))))−arcsinh x +(√(1+x^2 )) now consider this: (d/dx)[arcsinh x]=(1/( (√(1+x^2 )))) (d/dx)[arcsinh f(x)]=((f′(x))/( (√(1+f^2 (x))))) let f(x)=((g(x))/(h(x)))=(u/v) ⇒ ⇒ ((f′(x))/( (√(1+f^2 (x)))))=(((u′v−uv′)/v^2 )/( (√(1+(u/v)^2 ))))=((u′v−uv′)/(∣v∣(√(u^2 +v^2 )))) let v=1+x ⇒ ⇒ ((u′v−uv′)/(∣v∣(√(u^2 +v^2 ))))=((u′(1+x)−u)/(∣1+x∣(√(u^2 +1+2x+x^2 )))) we′d like the following equations to be true: (A) u′(1+x)−u=2 (B) (√(u^2 +1+2x+x^2 ))=(√(1+x^2 )) (A) works with u=x−1 but (B) (√(u^2 +1+2x+x^2 ))= =(√((x−1)^2 +1+2x+x^2 ))=(√(2(1+x^2 ))) we now have: (d/dx)[arcsinh(−((1−x)/(1+x)))]=((√2)/(∣1+x∣(√(1+x^2 )))) ⇒ ⇒ 2∫(dx/(∣1+x∣(√(1+x^2 ))))=(√2)arcsinh(−((1−x)/(1+x))) ⇒ [F(x)=arcsin(−((1−x)/(1+x))) has an uneven pole at x=−1, F′(x) is increasing for −∞<x<∞ F^](https://www.tinkutara.com/question/Q37031.png)