Question Number 150626 by puissant last updated on 14/Aug/21

$${S}\left({x}\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right){x}^{{n}} \\ $$$${S}\left(−\mathrm{1}\right)=\:?.. \\ $$$${please}\:{help}.. \\ $$
Answered by puissant last updated on 14/Aug/21
![S(x)=Σ_(n=1) ^∞ ln(1+(1/n))x^n ; S(−1)=? S(−1)=Σ_(n=1) ^∞ (−1)^n (ln(n+1)−ln(n)) = lim_(p→∞) Σ_(n=1) ^(2p) (−1)^n (ln(n+1)−ln(n)) =lim_(p→∞) [2(−ln2+ln3+....−ln(2p))+ln(2p+1)] =lim_(p→∞) ln[(((3.5.7.....(2p−1))/(2.4.6.....2p)))^2 (2p+1)(((2.4...2p)/(2.4...2p)))^2 ] =lim_(p→∞) ln((((2p!)^2 (2p+1))/(2^(4p) (p!)^2 ))) D′apre^](https://www.tinkutara.com/question/Q150676.png)