Question Number 188758 by Humble last updated on 06/Mar/23

$${the}\:{sum}\:{of}\:{the}\:\:{first}\:{three}\:{terms} \\ $$$${of}\:{an}\:{AP}\:{is}\:\mathrm{21}\:{and}\:\:{the}\:{sum}\:{of}\:{the} \\ $$$${first}\:\:{five}\:{terms}\:{is}\:\mathrm{55}.\:{find}. \\ $$$$\left(\mathrm{1}\right)\:{the}\:{first}\:{term} \\ $$$$\left(\mathrm{2}\right)\:{common}\:{difference} \\ $$$$\left(\mathrm{3}\right)\:{the}\:{sum}\:{of}\:{the}\:{first}\:{ten}\:{term} \\ $$$${of}\:{the}\:\:{sequence} \\ $$$$ \\ $$
Answered by floor(10²Eta[1]) last updated on 06/Mar/23

$$\mathrm{S}_{\mathrm{3}} =\mathrm{21},\:\mathrm{S}_{\mathrm{5}} =\mathrm{55} \\ $$$$\frac{\left(\mathrm{a}_{\mathrm{1}} +\mathrm{a}_{\mathrm{3}} \right)\mathrm{3}}{\mathrm{2}}=\mathrm{21},\:\frac{\left(\mathrm{a}_{\mathrm{1}} +\mathrm{a}_{\mathrm{5}} \right)\mathrm{5}}{\mathrm{2}}=\mathrm{55} \\ $$$$\Rightarrow\mathrm{a}_{\mathrm{1}} +\mathrm{a}_{\mathrm{3}} =\mathrm{14},\:\mathrm{a}_{\mathrm{1}} +\mathrm{a}_{\mathrm{5}} =\mathrm{22} \\ $$$$\Rightarrow\mathrm{a}_{\mathrm{1}} +\left(\mathrm{a}_{\mathrm{1}} +\mathrm{2r}\right)=\mathrm{14},\:\mathrm{a}_{\mathrm{1}} +\left(\mathrm{a}_{\mathrm{1}} +\mathrm{4r}\right)=\mathrm{22} \\ $$$$\Rightarrow\mathrm{a}_{\mathrm{1}} +\mathrm{r}=\mathrm{7},\:\mathrm{a}_{\mathrm{1}} +\mathrm{2r}=\mathrm{11} \\ $$$$\Rightarrow\mathrm{r}=\mathrm{4},\:\mathrm{a}_{\mathrm{1}} =\mathrm{3} \\ $$$$\left(\mathrm{1}\right):\:\mathrm{3} \\ $$$$\left(\mathrm{2}\right):\:\mathrm{4} \\ $$$$\left(\mathrm{3}\right):\:\mathrm{S}_{\mathrm{10}} =\frac{\left(\mathrm{a}_{\mathrm{1}} +\mathrm{a}_{\mathrm{10}} \right)\mathrm{10}}{\mathrm{2}}=\mathrm{210} \\ $$
Answered by Rasheed.Sindhi last updated on 06/Mar/23
![Let t is third term of the AP (t−2d)+(t−d)+t+(t+d)+(t+2d)=55 5t=55⇒t=11 (t−2d)+(t−d)+t=21 3t−3d=21 3(11)−3d=21⇒d=((33−21)/3)=4 first term=a=t−2d=11−2(4)=3 S_(10) =((10)/2)[2(3)+(10−1)(4)] =5(6+36)=210](https://www.tinkutara.com/question/Q188766.png)
$${Let}\:{t}\:{is}\:{third}\:{term}\:{of}\:{the}\:{AP} \\ $$$$\left({t}−\mathrm{2}{d}\right)+\left({t}−{d}\right)+{t}+\left({t}+{d}\right)+\left({t}+\mathrm{2}{d}\right)=\mathrm{55} \\ $$$$\mathrm{5}{t}=\mathrm{55}\Rightarrow{t}=\mathrm{11} \\ $$$$\left({t}−\mathrm{2}{d}\right)+\left({t}−{d}\right)+{t}=\mathrm{21} \\ $$$$\mathrm{3}{t}−\mathrm{3}{d}=\mathrm{21} \\ $$$$\mathrm{3}\left(\mathrm{11}\right)−\mathrm{3}{d}=\mathrm{21}\Rightarrow{d}=\frac{\mathrm{33}−\mathrm{21}}{\mathrm{3}}=\mathrm{4} \\ $$$${first}\:{term}={a}={t}−\mathrm{2}{d}=\mathrm{11}−\mathrm{2}\left(\mathrm{4}\right)=\mathrm{3} \\ $$$${S}_{\mathrm{10}} =\frac{\mathrm{10}}{\mathrm{2}}\left[\mathrm{2}\left(\mathrm{3}\right)+\left(\mathrm{10}−\mathrm{1}\right)\left(\mathrm{4}\right)\right] \\ $$$$\:\:\:\:\:=\mathrm{5}\left(\mathrm{6}+\mathrm{36}\right)=\mathrm{210} \\ $$
Answered by Rasheed.Sindhi last updated on 06/Mar/23
![Let u & t are 2nd & 3rd terms respectively. d is common difference. •(u−d)+u+(u+d)=21 3u=21⇒u=7 (2nd term) •(t−2d)+(t−d)+t+(t+d)+(t+2d)=55 5t=55⇒t=11 (3rd term) •d=t−u=11−7=4 • First term=u−d=7−4=3 • S_(10) =((10)/2)[2(3)+(10−1)(4)] =5(6+36)=5×42=210](https://www.tinkutara.com/question/Q188769.png)
$${Let}\:\:{u}\:\&\:{t}\:{are}\:\mathrm{2}{nd}\:\&\:\mathrm{3}{rd}\:{terms}\:{respectively}. \\ $$$${d}\:{is}\:{common}\:{difference}. \\ $$$$\bullet\left({u}−{d}\right)+{u}+\left({u}+{d}\right)=\mathrm{21} \\ $$$$\:\:\:\:\mathrm{3}{u}=\mathrm{21}\Rightarrow{u}=\mathrm{7}\:\:\left(\mathrm{2}{nd}\:{term}\right) \\ $$$$\bullet\left({t}−\mathrm{2}{d}\right)+\left({t}−{d}\right)+{t}+\left({t}+{d}\right)+\left({t}+\mathrm{2}{d}\right)=\mathrm{55} \\ $$$$\:\:\:\:\mathrm{5}{t}=\mathrm{55}\Rightarrow{t}=\mathrm{11}\:\:\left(\mathrm{3}{rd}\:{term}\right) \\ $$$$\bullet{d}={t}−{u}=\mathrm{11}−\mathrm{7}=\mathrm{4} \\ $$$$\bullet\:{First}\:{term}={u}−{d}=\mathrm{7}−\mathrm{4}=\mathrm{3} \\ $$$$\bullet\:{S}_{\mathrm{10}} =\frac{\mathrm{10}}{\mathrm{2}}\left[\mathrm{2}\left(\mathrm{3}\right)+\left(\mathrm{10}−\mathrm{1}\right)\left(\mathrm{4}\right)\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\mathrm{5}\left(\mathrm{6}+\mathrm{36}\right)=\mathrm{5}×\mathrm{42}=\mathrm{210} \\ $$
Commented by Humble last updated on 07/Mar/23

$${thanks},\:{sir}.\: \\ $$