Question Number 194462 by Erico last updated on 08/Jul/23

$$\mathrm{Prove}\:\mathrm{that}\:\:\:\:\:\:\:\:\underset{\:\mathrm{0}} {\int}^{\:+\infty^{} } \frac{\mathrm{1}−\boldsymbol{{e}}^{−\boldsymbol{{x}}^{\mathrm{2}} } }{\boldsymbol{{x}}^{\mathrm{2}} }\boldsymbol{{dx}}=\sqrt{\boldsymbol{\pi}} \\ $$
Answered by mnjuly1970 last updated on 08/Jul/23
![I= ∫_0 ^( ∞) (( 1−e^( −x^2 ) )/x^( 2) ) dx =^? (√π) I=^(i.b.p) [ −(1/x) (1−e^( −x^( 2) ) )]_0 ^∞ + 2∫_0 ^( ∞) e^( −x^( 2) ) dx =_(integral) ^(Gauss) 2 ( ((√π)/2) )= (√π)](https://www.tinkutara.com/question/Q194472.png)
$$\:\:\:\:{I}=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:\mathrm{1}−{e}^{\:−{x}^{\mathrm{2}} } }{{x}^{\:\mathrm{2}} }\:{dx}\:\overset{?} {=}\:\sqrt{\pi} \\ $$$$\:{I}\overset{{i}.{b}.{p}} {=}\:\left[\:−\frac{\mathrm{1}}{{x}}\:\left(\mathrm{1}−{e}^{\:−{x}^{\:\mathrm{2}} } \right)\right]_{\mathrm{0}} ^{\infty} \:\:+\:\mathrm{2}\int_{\mathrm{0}} ^{\:\infty} {e}^{\:−{x}^{\:\mathrm{2}} } {dx}\: \\ $$$$\:\:\:\:\:\:\underset{{integral}} {\overset{{Gauss}} {=}}\:\mathrm{2}\:\left(\:\frac{\sqrt{\pi}}{\mathrm{2}}\:\right)=\:\sqrt{\pi} \\ $$$$ \\ $$$$ \\ $$