Question Number 198031 by cortano12 last updated on 08/Oct/23

Answered by AST last updated on 08/Oct/23
![a^2 +b^2 =20ab⇒(a−b)^2 =18ab...(i) a^3 +b^3 =19ab⇒(a+b)(a^2 +b^2 −ab)=19ab...(ii) (i) and (ii)⇒(a+b)[(a−b)^2 +ab] =(a+b)(a−b)^2 +ab(a+b)=19ab=(a−b)^2 +ab ⇒(a−b)^2 (a+b−1)+ab(a+b−1)=0 ⇒(a+b−1)[(a−b)^2 +ab]=0 ⇒a+b=1 or (a−b)^2 =−ab⇒a^2 +b^2 =ab Case I: a+b=1⇒a^2 +b^2 +2ab=1 ⇒22ab=1⇒ab=(1/(22)) ⇒(a−b)^2 =a^2 +b^2 −2ab=1−(2/(11))=(9/(11)) ⇒∣a−b∣=((3(√(11)))/(11)) Case II: a^2 +b^2 =ab⇒ab=20ab Since a,b≠0,we get 1=20(absurd) So Case I gives ∣a−b∣=((3(√(11)))/(11))](https://www.tinkutara.com/question/Q198033.png)
$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\mathrm{20}{ab}\Rightarrow\left({a}−{b}\right)^{\mathrm{2}} =\mathrm{18}{ab}…\left({i}\right) \\ $$$${a}^{\mathrm{3}} +{b}^{\mathrm{3}} =\mathrm{19}{ab}\Rightarrow\left({a}+{b}\right)\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{ab}\right)=\mathrm{19}{ab}…\left({ii}\right) \\ $$$$\left({i}\right)\:{and}\:\left({ii}\right)\Rightarrow\left({a}+{b}\right)\left[\left({a}−{b}\right)^{\mathrm{2}} +{ab}\right] \\ $$$$=\left({a}+{b}\right)\left({a}−{b}\right)^{\mathrm{2}} +{ab}\left({a}+{b}\right)=\mathrm{19}{ab}=\left({a}−{b}\right)^{\mathrm{2}} +{ab} \\ $$$$\Rightarrow\left({a}−{b}\right)^{\mathrm{2}} \left({a}+{b}−\mathrm{1}\right)+{ab}\left({a}+{b}−\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow\left({a}+{b}−\mathrm{1}\right)\left[\left({a}−{b}\right)^{\mathrm{2}} +{ab}\right]=\mathrm{0} \\ $$$$\Rightarrow{a}+{b}=\mathrm{1}\:{or}\:\left({a}−{b}\right)^{\mathrm{2}} =−{ab}\Rightarrow{a}^{\mathrm{2}} +{b}^{\mathrm{2}} ={ab} \\ $$$${Case}\:{I}:\:{a}+{b}=\mathrm{1}\Rightarrow{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{ab}=\mathrm{1} \\ $$$$\Rightarrow\mathrm{22}{ab}=\mathrm{1}\Rightarrow{ab}=\frac{\mathrm{1}}{\mathrm{22}} \\ $$$$\Rightarrow\left({a}−{b}\right)^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}=\mathrm{1}−\frac{\mathrm{2}}{\mathrm{11}}=\frac{\mathrm{9}}{\mathrm{11}} \\ $$$$\Rightarrow\mid{a}−{b}\mid=\frac{\mathrm{3}\sqrt{\mathrm{11}}}{\mathrm{11}} \\ $$$${Case}\:{II}:\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} ={ab}\Rightarrow{ab}=\mathrm{20}{ab} \\ $$$${Since}\:{a},{b}\neq\mathrm{0},{we}\:{get}\:\mathrm{1}=\mathrm{20}\left({absurd}\right) \\ $$$${So}\:{Case}\:{I}\:{gives}\:\mid{a}−{b}\mid=\frac{\mathrm{3}\sqrt{\mathrm{11}}}{\mathrm{11}} \\ $$
Answered by mr W last updated on 09/Oct/23

$${let}\:{u}={a}+{b},\:{v}={ab}\neq\mathrm{0} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\mathrm{20}{ab} \\ $$$$\Rightarrow{u}^{\mathrm{2}} =\mathrm{22}{v}\:\:\:…\left({i}\right) \\ $$$${a}^{\mathrm{3}} +{b}^{\mathrm{3}} =\mathrm{19}{ab} \\ $$$${a}^{\mathrm{3}} +{b}^{\mathrm{3}} +\mathrm{3}{ab}\left({a}+{b}\right)=\mathrm{19}{ab}+\mathrm{3}{ab}\left({a}+{b}\right) \\ $$$$\Rightarrow{u}^{\mathrm{3}} =\mathrm{19}{v}+\mathrm{3}{uv}\:\:\:…\left({ii}\right) \\ $$$$\left({i}\right)×{u}−\left({ii}\right): \\ $$$$\mathrm{19}\left({u}−\mathrm{1}\right){v}=\mathrm{0} \\ $$$$\Rightarrow{u}=\mathrm{1}\:\Rightarrow{v}=\frac{\mathrm{1}}{\mathrm{22}} \\ $$$$\left({a}−{b}\right)^{\mathrm{2}} =\left({a}+{b}\right)^{\mathrm{2}} −\mathrm{4}{ab}=\mathrm{1}^{\mathrm{2}} −\frac{\mathrm{4}}{\mathrm{22}}=\frac{\mathrm{9}}{\mathrm{11}} \\ $$$$\Rightarrow\mid{a}−{b}\mid=\frac{\mathrm{3}}{\:\sqrt{\mathrm{11}}}\:\:\checkmark \\ $$
Answered by Frix last updated on 08/Oct/23
![(1) a^2 +b^2 −20ab=0 (2) a^3 +b^3 −19ab=0 (2−1) a^3 +b^3 −a^2 −b^2 +ab=0 (a+b−1)(a^2 −ab+b^2 )=0 b=1−a [b=a(((1±(√3)i)/2)) doesn′t fit (1)∨(2)] ⇒ ∣a−b∣=∣2a−1∣ Inserting in (1) ⇒ a^2 −a+(1/(22))=0 a=(1/2)±((√(11))/(22)) ∣a−b∣=∣2a−1∣=((3(√(11)))/(11))](https://www.tinkutara.com/question/Q198037.png)
$$\left(\mathrm{1}\right)\:\:\:\:\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{20}{ab}=\mathrm{0} \\ $$$$\left(\mathrm{2}\right)\:\:\:\:\:{a}^{\mathrm{3}} +{b}^{\mathrm{3}} −\mathrm{19}{ab}=\mathrm{0} \\ $$$$ \\ $$$$\left(\mathrm{2}−\mathrm{1}\right) \\ $$$${a}^{\mathrm{3}} +{b}^{\mathrm{3}} −{a}^{\mathrm{2}} −{b}^{\mathrm{2}} +{ab}=\mathrm{0} \\ $$$$\left({a}+{b}−\mathrm{1}\right)\left({a}^{\mathrm{2}} −{ab}+{b}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$${b}=\mathrm{1}−{a}\:\:\:\:\:\left[{b}={a}\left(\frac{\mathrm{1}\pm\sqrt{\mathrm{3}}\mathrm{i}}{\mathrm{2}}\right)\:\mathrm{doesn}'\mathrm{t}\:\mathrm{fit}\:\left(\mathrm{1}\right)\vee\left(\mathrm{2}\right)\right] \\ $$$$\Rightarrow\:\mid{a}−{b}\mid=\mid\mathrm{2}{a}−\mathrm{1}\mid \\ $$$$\mathrm{Inserting}\:\mathrm{in}\:\left(\mathrm{1}\right)\:\Rightarrow \\ $$$${a}^{\mathrm{2}} −{a}+\frac{\mathrm{1}}{\mathrm{22}}=\mathrm{0} \\ $$$${a}=\frac{\mathrm{1}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{11}}}{\mathrm{22}} \\ $$$$\mid{a}−{b}\mid=\mid\mathrm{2}{a}−\mathrm{1}\mid=\frac{\mathrm{3}\sqrt{\mathrm{11}}}{\mathrm{11}} \\ $$