Menu Close

Question-214281




Question Number 214281 by ajfour last updated on 03/Dec/24
Commented by ajfour last updated on 03/Dec/24
Q. 214132
$${Q}.\:\mathrm{214132} \\ $$
Answered by ajfour last updated on 04/Dec/24
ωbsin θ=Q=q (simply)=sasin φ  bcos θ=y=acos φ  ω=(q/( (√(b^2 −y^2 ))))   ;   s=(q/( (√(a^2 −y^2 ))))  M{ω((b/2))cos θ+p}=m{s((a/2))cos φ+p}  M{((qy)/( 2(√(b^2 −y^2 ))))+p}=m{((qy)/( 2(√(a^2 −y^2 ))))−p}  p=(q/(2(M+m))){((my)/( (√(a^2 −y^2 ))))−((My)/( (√(b^2 −y^2 ))))}  2(M+m)g(y_0 −y)=  ((Mb^2 ω^2 )/(12))+M{(p+((ωb)/2)cos θ)^2 +(q^2 /4)}  +((ma^2 s^2 )/(12))+m{(((sa)/2)cos φ−p)^2 +(q^2 /4)}  ⇒  ((Mb^2 )/(12))((q^2 /( b^2 −y^2 )))+M{(p+((qy)/( 2(√(b^2 −y^2 )))))^2 +(q^2 /4)}  +((ma^2 )/(12))((q^2 /(a^2 −y^2 )))+m{(((qy)/( 2(√(a^2 −y^2 ))))−p)^2 +(q^2 /4)}    =2(M+m)g(y_0 −y)  For y=0  we have p=0  hence  ((Mq^2 )/3)+((mq^2 )/3)=2(M+m)g((h/2))                            q=(√(3gh))  ⇒ (q^2 /(12)){((b^2 M)/(b^2 −y^2 ))+((a^2 m)/(a^2 −y^2 ))+3(M+m)}             +((m^2 /M)+m)(((qy)/(2(√(a^2 −y^2 ))))−p)^2         =2(M+m)g(y_0 −y)  replacing for p  ⇒ (1/(12)){((b^2 M)/(b^2 −y^2 ))+((a^2 m)/(a^2 −y^2 ))+3(M+m)}             +((mMy^2 )/(4(M+m)))[(1/( (√(a^2 −y^2 ))))+(1/( (√(b^2 −y^2 ))))]^2      =((2(M+m)g(y_0 −y))/q^2 )  q=v_y
$$\omega{b}\mathrm{sin}\:\theta={Q}={q}\:\left({simply}\right)={sa}\mathrm{sin}\:\phi \\ $$$${b}\mathrm{cos}\:\theta={y}={a}\mathrm{cos}\:\phi \\ $$$$\omega=\frac{{q}}{\:\sqrt{{b}^{\mathrm{2}} −{y}^{\mathrm{2}} }}\:\:\:;\:\:\:{s}=\frac{{q}}{\:\sqrt{{a}^{\mathrm{2}} −{y}^{\mathrm{2}} }} \\ $$$${M}\left\{\omega\left(\frac{{b}}{\mathrm{2}}\right)\mathrm{cos}\:\theta+{p}\right\}={m}\left\{{s}\left(\frac{{a}}{\mathrm{2}}\right)\mathrm{cos}\:\phi+{p}\right\} \\ $$$${M}\left\{\frac{{qy}}{\:\mathrm{2}\sqrt{{b}^{\mathrm{2}} −{y}^{\mathrm{2}} }}+{p}\right\}={m}\left\{\frac{{qy}}{\:\mathrm{2}\sqrt{{a}^{\mathrm{2}} −{y}^{\mathrm{2}} }}−{p}\right\} \\ $$$${p}=\frac{{q}}{\mathrm{2}\left({M}+{m}\right)}\left\{\frac{{my}}{\:\sqrt{{a}^{\mathrm{2}} −{y}^{\mathrm{2}} }}−\frac{{My}}{\:\sqrt{{b}^{\mathrm{2}} −{y}^{\mathrm{2}} }}\right\} \\ $$$$\mathrm{2}\left({M}+{m}\right){g}\left({y}_{\mathrm{0}} −{y}\right)= \\ $$$$\frac{{Mb}^{\mathrm{2}} \omega^{\mathrm{2}} }{\mathrm{12}}+{M}\left\{\left({p}+\frac{\omega{b}}{\mathrm{2}}\mathrm{cos}\:\theta\right)^{\mathrm{2}} +\frac{{q}^{\mathrm{2}} }{\mathrm{4}}\right\} \\ $$$$+\frac{{ma}^{\mathrm{2}} {s}^{\mathrm{2}} }{\mathrm{12}}+{m}\left\{\left(\frac{{sa}}{\mathrm{2}}\mathrm{cos}\:\phi−{p}\right)^{\mathrm{2}} +\frac{{q}^{\mathrm{2}} }{\mathrm{4}}\right\} \\ $$$$\Rightarrow \\ $$$$\frac{{Mb}^{\mathrm{2}} }{\mathrm{12}}\left(\frac{{q}^{\mathrm{2}} }{\:{b}^{\mathrm{2}} −{y}^{\mathrm{2}} }\right)+{M}\left\{\left({p}+\frac{{qy}}{\:\mathrm{2}\sqrt{{b}^{\mathrm{2}} −{y}^{\mathrm{2}} }}\right)^{\mathrm{2}} +\frac{{q}^{\mathrm{2}} }{\mathrm{4}}\right\} \\ $$$$+\frac{{ma}^{\mathrm{2}} }{\mathrm{12}}\left(\frac{{q}^{\mathrm{2}} }{{a}^{\mathrm{2}} −{y}^{\mathrm{2}} }\right)+{m}\left\{\left(\frac{{qy}}{\:\mathrm{2}\sqrt{{a}^{\mathrm{2}} −{y}^{\mathrm{2}} }}−{p}\right)^{\mathrm{2}} +\frac{{q}^{\mathrm{2}} }{\mathrm{4}}\right\} \\ $$$$\:\:=\mathrm{2}\left({M}+{m}\right){g}\left({y}_{\mathrm{0}} −{y}\right) \\ $$$${For}\:{y}=\mathrm{0}\:\:{we}\:{have}\:{p}=\mathrm{0}\:\:{hence} \\ $$$$\frac{{Mq}^{\mathrm{2}} }{\mathrm{3}}+\frac{{mq}^{\mathrm{2}} }{\mathrm{3}}=\mathrm{2}\left({M}+{m}\right){g}\left(\frac{{h}}{\mathrm{2}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{q}=\sqrt{\mathrm{3}{gh}} \\ $$$$\Rightarrow\:\frac{{q}^{\mathrm{2}} }{\mathrm{12}}\left\{\frac{{b}^{\mathrm{2}} {M}}{{b}^{\mathrm{2}} −{y}^{\mathrm{2}} }+\frac{{a}^{\mathrm{2}} {m}}{{a}^{\mathrm{2}} −{y}^{\mathrm{2}} }+\mathrm{3}\left({M}+{m}\right)\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:+\left(\frac{{m}^{\mathrm{2}} }{{M}}+{m}\right)\left(\frac{{qy}}{\mathrm{2}\sqrt{{a}^{\mathrm{2}} −{y}^{\mathrm{2}} }}−{p}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:=\mathrm{2}\left({M}+{m}\right){g}\left({y}_{\mathrm{0}} −{y}\right) \\ $$$${replacing}\:{for}\:{p} \\ $$$$\Rightarrow\:\frac{\mathrm{1}}{\mathrm{12}}\left\{\frac{{b}^{\mathrm{2}} {M}}{{b}^{\mathrm{2}} −{y}^{\mathrm{2}} }+\frac{{a}^{\mathrm{2}} {m}}{{a}^{\mathrm{2}} −{y}^{\mathrm{2}} }+\mathrm{3}\left({M}+{m}\right)\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:+\frac{{mMy}^{\mathrm{2}} }{\mathrm{4}\left({M}+{m}\right)}\left[\frac{\mathrm{1}}{\:\sqrt{{a}^{\mathrm{2}} −{y}^{\mathrm{2}} }}+\frac{\mathrm{1}}{\:\sqrt{{b}^{\mathrm{2}} −{y}^{\mathrm{2}} }}\right]^{\mathrm{2}} \\ $$$$\:\:\:=\frac{\mathrm{2}\left({M}+{m}\right){g}\left({y}_{\mathrm{0}} −{y}\right)}{{q}^{\mathrm{2}} } \\ $$$${q}={v}_{{y}} \\ $$
Commented by mr W last updated on 04/Dec/24
��
Commented by mr W last updated on 04/Dec/24
the hinge hits the ground with a  speed of (√(3gh)), which is larger than  the speed of free fall from the same  hight. does it mean that the hinge  reaches the ground faster than an  object in free fall from the same  hight? if this is true, then free fall  is not the fastest motion for an  object from the hight h. i don′t think  this is true and want to check it   through Q214248.
$${the}\:{hinge}\:{hits}\:{the}\:{ground}\:{with}\:{a} \\ $$$${speed}\:{of}\:\sqrt{\mathrm{3}{gh}},\:{which}\:{is}\:{larger}\:{than} \\ $$$${the}\:{speed}\:{of}\:{free}\:{fall}\:{from}\:{the}\:{same} \\ $$$${hight}.\:{does}\:{it}\:{mean}\:{that}\:{the}\:{hinge} \\ $$$${reaches}\:{the}\:{ground}\:{faster}\:{than}\:{an} \\ $$$${object}\:{in}\:{free}\:{fall}\:{from}\:{the}\:{same} \\ $$$${hight}?\:{if}\:{this}\:{is}\:{true},\:{then}\:{free}\:{fall} \\ $$$${is}\:{not}\:{the}\:{fastest}\:{motion}\:{for}\:{an} \\ $$$${object}\:{from}\:{the}\:{hight}\:{h}.\:{i}\:{don}'{t}\:{think} \\ $$$${this}\:{is}\:{true}\:{and}\:{want}\:{to}\:{check}\:{it}\: \\ $$$${through}\:{Q}\mathrm{214248}. \\ $$
Commented by ajfour last updated on 04/Dec/24
I Think it must be right. Its pulled  down. center of mass after all  comes with speed ((√(3gh))/2) < (√(2gh)) .
$${I}\:{Think}\:{it}\:{must}\:{be}\:{right}.\:{Its}\:{pulled} \\ $$$${down}.\:{center}\:{of}\:{mass}\:{after}\:{all} \\ $$$${comes}\:{with}\:{speed}\:\frac{\sqrt{\mathrm{3}{gh}}}{\mathrm{2}}\:<\:\sqrt{\mathrm{2}{gh}}\:. \\ $$
Commented by ajfour last updated on 04/Dec/24
Commented by mr W last updated on 04/Dec/24
the speed can be larger than free  fall, i don′t doubt this. i mean,   nevertheless the hinge should take  more time to reach the ground than  in free fall. is this true?
$${the}\:{speed}\:{can}\:{be}\:{larger}\:{than}\:{free} \\ $$$${fall},\:{i}\:{don}'{t}\:{doubt}\:{this}.\:{i}\:{mean},\: \\ $$$${nevertheless}\:{the}\:{hinge}\:{should}\:{take} \\ $$$${more}\:{time}\:{to}\:{reach}\:{the}\:{ground}\:{than} \\ $$$${in}\:{free}\:{fall}.\:{is}\:{this}\:{true}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *