Menu Close

Question-214447




Question Number 214447 by 2universe456 last updated on 08/Dec/24
Commented by Frix last updated on 08/Dec/24
=abc
$$={abc} \\ $$
Answered by Rasheed.Sindhi last updated on 09/Dec/24
 determinant ((1,1,1,1),(1,(a+1),1,1),(1,1,(1+b),1),(1,1,1,(1+c)))   Subtract C_1  from C_2 ,C_3  & C_4   = determinant ((1,0,0,0),(1,a,0,0),(1,0,b,0),(1,0,0,c))   = determinant ((a,0,0),(0,b,0),(0,0,c))  =a determinant ((b,0),(0,c))   =a(bc−0)=abc
$$\begin{vmatrix}{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{1}}&{{a}+\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}+{b}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}+{c}}\end{vmatrix}\: \\ $$$${Subtract}\:\mathrm{C}_{\mathrm{1}} \:{from}\:\mathrm{C}_{\mathrm{2}} ,\mathrm{C}_{\mathrm{3}} \:\&\:\mathrm{C}_{\mathrm{4}} \\ $$$$=\begin{vmatrix}{\mathrm{1}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{1}}&{{a}}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{1}}&{\mathrm{0}}&{{b}}&{\mathrm{0}}\\{\mathrm{1}}&{\mathrm{0}}&{\mathrm{0}}&{{c}}\end{vmatrix}\: \\ $$$$=\begin{vmatrix}{{a}}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{0}}&{{b}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}&{{c}}\end{vmatrix} \\ $$$$={a}\begin{vmatrix}{{b}}&{\mathrm{0}}\\{\mathrm{0}}&{{c}}\end{vmatrix}\: \\ $$$$={a}\left({bc}−\mathrm{0}\right)={abc} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *