Question Number 214876 by mr W last updated on 22/Dec/24

Commented by TonyCWX08 last updated on 22/Dec/24

$${Want}\:{a}\:{clarification} \\ $$$${Does}\:{the}\:{tangent}\:{point}\:{at}\:{Blue}\:{circle}\:{cuts}\:{the}\:{line}\:{into}\:\mathrm{2}\:{equal}\:{parts}? \\ $$$${If}\:{no},\:{then}\:{I}\:{have}\:{no}\:{idea}. \\ $$
Commented by mr W last updated on 22/Dec/24

$${yes}. \\ $$$${everything}\:{is}\:{as}\:{it}\:{looks}\:{like}: \\ $$$${blue}\:{triangle}\:{is}\:{right}−{angled}. \\ $$$${yellow}\:{circle}\:{is}\:{inscribed}\:{in}\:{the} \\ $$$${blue}\:{triangle}\:{and}\:{touches}\:{the}\:{big} \\ $$$${circle}. \\ $$$${the}\:{blue}\:{circle}\:{touches}\:{the}\:{big}\:{circle} \\ $$$${and}\:{the}\:{blue}\:{side}\:{at}\:{the}\:{middle}\:{point}. \\ $$
Commented by TonyCWX08 last updated on 22/Dec/24

$${Oh}. \\ $$$${Then}\:{I}\:{know}\:{what}\:{to}\:{do}! \\ $$
Answered by TonyCWX08 last updated on 22/Dec/24

$${AC}=\mathrm{13} \\ $$$${a}=\frac{\mathrm{13}+\mathrm{12}+\mathrm{5}}{\mathrm{2}}=\mathrm{2} \\ $$$${CG}=\mathrm{6}.\mathrm{5} \\ $$$${GH}=\mathrm{12}+\mathrm{5}+\mathrm{13}−\mathrm{3}−\mathrm{6}.\mathrm{5}=\mathrm{3}.\mathrm{5} \\ $$$$ \\ $$$${OC}^{\mathrm{2}} ={OG}^{\mathrm{2}} +\mathrm{6}.\mathrm{5}^{\mathrm{2}} \\ $$$$ \\ $$$${OX}={OP}−\mathrm{2} \\ $$$${OX}^{\mathrm{2}} ={XF}^{\mathrm{2}} +{OF}^{\mathrm{2}} \\ $$$$\left({OP}−\mathrm{2}\right)^{\mathrm{2}} =\mathrm{3}.\mathrm{5}^{\mathrm{2}} +\left(\mathrm{2}+{OG}\right)^{\mathrm{2}} \\ $$$${OP}^{\mathrm{2}} −\mathrm{4}{OP}+\mathrm{4}=\mathrm{12}.\mathrm{25}+\mathrm{4}+\mathrm{4}{OG}+{OG}^{\mathrm{2}} \\ $$$${OG}^{\mathrm{2}} +\mathrm{42}.\mathrm{25}−\mathrm{4}{OP}=\mathrm{12}.\mathrm{25}+\mathrm{4}{OG}+{OG}^{\mathrm{2}} \\ $$$$\mathrm{42}.\mathrm{25}−\mathrm{4}{OP}=\mathrm{12}.\mathrm{25}+\mathrm{4}{OG} \\ $$$$−\mathrm{4}{OP}−\mathrm{4}{OG}=−\mathrm{30} \\ $$$${OP}+{OG}=\mathrm{7}.\mathrm{5} \\ $$$$ \\ $$$${Observe}\:{that}\: \\ $$$$\mathrm{2}{b}={OP}+{OH} \\ $$$$\mathrm{2}{b}=\mathrm{7}.\mathrm{5} \\ $$$${b}=\mathrm{3}.\mathrm{75} \\ $$$$ \\ $$$$\frac{{b}}{{a}}=\frac{\mathrm{3}.\mathrm{75}}{\mathrm{2}}=\mathrm{1}.\mathrm{875} \\ $$
Commented by TonyCWX08 last updated on 23/Dec/24

$${Thanks}\:{sir}! \\ $$$${I}\:{finally}\:{able}\:{to}\:{utilize}\:{what}\:{I}\:{had}\:{learnt}! \\ $$
Commented by TonyCWX08 last updated on 22/Dec/24

Commented by mr W last updated on 22/Dec/24

$${right}\:{sir}! \\ $$
Answered by A5T last updated on 31/Dec/24

$$\mathrm{R}^{\mathrm{2}} =\mathrm{6}.\mathrm{5}^{\mathrm{2}} +\left(\mathrm{2b}−\mathrm{R}\right)^{\mathrm{2}} \Rightarrow\mathrm{0}=\mathrm{42}.\mathrm{25}+\mathrm{4b}^{\mathrm{2}} −\mathrm{4bR} \\ $$$$\Rightarrow\mathrm{0}=\mathrm{6}.\mathrm{5}^{\mathrm{2}} +\mathrm{4b}^{\mathrm{2}} −\mathrm{4bR}\Rightarrow\mathrm{R}=\frac{\mathrm{4b}^{\mathrm{2}} +\mathrm{42}.\mathrm{25}}{\mathrm{4b}} \\ $$$$\mathrm{a}\left(\frac{\mathrm{5}+\mathrm{12}+\mathrm{13}}{\mathrm{2}}\right)=\frac{\mathrm{5}×\mathrm{12}}{\mathrm{2}}\Rightarrow\mathrm{a}=\frac{\mathrm{60}}{\mathrm{30}}=\mathrm{2} \\ $$$$\left(\mathrm{a}−\mathrm{R}+\mathrm{2b}\right)^{\mathrm{2}} +\left(\mathrm{6}.\mathrm{5}−\mathrm{3}\right)^{\mathrm{2}} =\left(\mathrm{R}−\mathrm{a}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{4b}^{\mathrm{2}} +\mathrm{8b}−\mathrm{4bR}+\mathrm{12}.\mathrm{25}=\mathrm{0} \\ $$$$\Rightarrow−\mathrm{30}+\mathrm{8b}=\mathrm{0}\Rightarrow\mathrm{8b}=\mathrm{30}\Rightarrow\mathrm{b}=\frac{\mathrm{15}}{\mathrm{4}}=\mathrm{3}.\mathrm{75} \\ $$$$\Rightarrow\frac{\mathrm{b}}{\mathrm{a}}=\frac{\mathrm{3}.\mathrm{75}}{\mathrm{2}}=\mathrm{1}.\mathrm{875} \\ $$