Menu Close

Question-214925




Question Number 214925 by efronzo1 last updated on 24/Dec/24
Commented by GDVilla last updated on 24/Dec/24
Why this question in arabic translate pls
$$\mathrm{Why}\:\mathrm{this}\:\mathrm{question}\:\mathrm{in}\:\mathrm{arabic}\:\mathrm{translate}\:\mathrm{pls} \\ $$
Answered by TonyCWX08 last updated on 24/Dec/24
Q1.  x^2 =(x)^(1/3)   x^6 =x  x^6 −x=0  x(x^5 −1)=0  x=0 or x=1    ∫_0 ^1 ((x)^(1/3) −x^2 )dx  =(((3x(x)^(1/3) )/4)−(x^3 /3))_0 ^1   =(5/(12))    Q2.  (√(2x−4))=2  2x−4=4  2x=8  x=4    ∫_0 ^4 (2−(√(2x−4)))dx  =(2x−(((2x−4)(√(2x−4)))/3))_0 ^4   =((16)/3)
$${Q}\mathrm{1}. \\ $$$${x}^{\mathrm{2}} =\sqrt[{\mathrm{3}}]{{x}} \\ $$$${x}^{\mathrm{6}} ={x} \\ $$$${x}^{\mathrm{6}} −{x}=\mathrm{0} \\ $$$${x}\left({x}^{\mathrm{5}} −\mathrm{1}\right)=\mathrm{0} \\ $$$${x}=\mathrm{0}\:{or}\:{x}=\mathrm{1} \\ $$$$ \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\left(\sqrt[{\mathrm{3}}]{{x}}−{x}^{\mathrm{2}} \right){dx} \\ $$$$=\left(\frac{\mathrm{3}{x}\sqrt[{\mathrm{3}}]{{x}}}{\mathrm{4}}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}}\underset{\mathrm{0}} {\overset{\mathrm{1}} {\right)}} \\ $$$$=\frac{\mathrm{5}}{\mathrm{12}} \\ $$$$ \\ $$$${Q}\mathrm{2}. \\ $$$$\sqrt{\mathrm{2}{x}−\mathrm{4}}=\mathrm{2} \\ $$$$\mathrm{2}{x}−\mathrm{4}=\mathrm{4} \\ $$$$\mathrm{2}{x}=\mathrm{8} \\ $$$${x}=\mathrm{4} \\ $$$$ \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{4}} {\int}}\left(\mathrm{2}−\sqrt{\mathrm{2}{x}−\mathrm{4}}\right){dx} \\ $$$$=\left(\mathrm{2}{x}−\frac{\left(\mathrm{2}{x}−\mathrm{4}\right)\sqrt{\mathrm{2}{x}−\mathrm{4}}}{\mathrm{3}}\underset{\mathrm{0}} {\overset{\mathrm{4}} {\right)}} \\ $$$$=\frac{\mathrm{16}}{\mathrm{3}} \\ $$
Answered by mr W last updated on 24/Dec/24
(1)  A_(green) =1×1−((1×1)/3)−((1×1)/4)=(5/(12))  (2)  A_(green) =2×4−((2×2×2)/3)=((16)/3)
$$\left(\mathrm{1}\right) \\ $$$${A}_{{green}} =\mathrm{1}×\mathrm{1}−\frac{\mathrm{1}×\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}×\mathrm{1}}{\mathrm{4}}=\frac{\mathrm{5}}{\mathrm{12}} \\ $$$$\left(\mathrm{2}\right) \\ $$$${A}_{{green}} =\mathrm{2}×\mathrm{4}−\frac{\mathrm{2}×\mathrm{2}×\mathrm{2}}{\mathrm{3}}=\frac{\mathrm{16}}{\mathrm{3}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *