Menu Close

Question-215776




Question Number 215776 by cherokeesay last updated on 17/Jan/25
Answered by A5T last updated on 18/Jan/25
Let the radius of the circle be r  AC∥OB⇒CB=(√(r^2 +(r−x)^2 ))=(√(2r^2 +x^2 −2rx))  Power point of C with respect to the circle  ⇒x^2 =CP×CB⇒CP=(x^2 /( (√(2r^2 +x^2 −2rx))))  ⇒BP=CB−CP=((2r^2 −2rx)/( (√(2r^2 +x^2 −2rx))))  Let DP meet the circle again at F  △CPD∼△BPF⇒(b/(2r))=((CP)/(BP))=(x^2 /(2r^2 −2rx))⇒b=(x^2 /(r−x))  △EOF∼△EAD⇒(a/(r−a))=(r/(b+x))⇒a(b+x)=r^2 −ar  ⇒a=(r^2 /(b+x+r))=(r^2 /((x^2 /(r−x))+x+r))=((r^2 (r−x))/r^2 )=r−x  ⇒a×b=(r−x)×((x^2 /(r−x)))=x^2                                         ■
$$\mathrm{Let}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{be}\:\mathrm{r} \\ $$$$\mathrm{AC}\parallel\mathrm{OB}\Rightarrow\mathrm{CB}=\sqrt{\mathrm{r}^{\mathrm{2}} +\left(\mathrm{r}−\mathrm{x}\right)^{\mathrm{2}} }=\sqrt{\mathrm{2r}^{\mathrm{2}} +\mathrm{x}^{\mathrm{2}} −\mathrm{2rx}} \\ $$$$\mathrm{Power}\:\mathrm{point}\:\mathrm{of}\:\mathrm{C}\:\mathrm{with}\:\mathrm{respect}\:\mathrm{to}\:\mathrm{the}\:\mathrm{circle} \\ $$$$\Rightarrow\mathrm{x}^{\mathrm{2}} =\mathrm{CP}×\mathrm{CB}\Rightarrow\mathrm{CP}=\frac{\mathrm{x}^{\mathrm{2}} }{\:\sqrt{\mathrm{2r}^{\mathrm{2}} +\mathrm{x}^{\mathrm{2}} −\mathrm{2rx}}} \\ $$$$\Rightarrow\mathrm{BP}=\mathrm{CB}−\mathrm{CP}=\frac{\mathrm{2r}^{\mathrm{2}} −\mathrm{2rx}}{\:\sqrt{\mathrm{2r}^{\mathrm{2}} +\mathrm{x}^{\mathrm{2}} −\mathrm{2rx}}} \\ $$$$\mathrm{Let}\:\mathrm{DP}\:\mathrm{meet}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{again}\:\mathrm{at}\:\mathrm{F} \\ $$$$\bigtriangleup\mathrm{CPD}\sim\bigtriangleup\mathrm{BPF}\Rightarrow\frac{\mathrm{b}}{\mathrm{2r}}=\frac{\mathrm{CP}}{\mathrm{BP}}=\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2r}^{\mathrm{2}} −\mathrm{2rx}}\Rightarrow\mathrm{b}=\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{r}−\mathrm{x}} \\ $$$$\bigtriangleup\mathrm{EOF}\sim\bigtriangleup\mathrm{EAD}\Rightarrow\frac{\mathrm{a}}{\mathrm{r}−\mathrm{a}}=\frac{\mathrm{r}}{\mathrm{b}+\mathrm{x}}\Rightarrow\mathrm{a}\left(\mathrm{b}+\mathrm{x}\right)=\mathrm{r}^{\mathrm{2}} −\mathrm{ar} \\ $$$$\Rightarrow\mathrm{a}=\frac{\mathrm{r}^{\mathrm{2}} }{\mathrm{b}+\mathrm{x}+\mathrm{r}}=\frac{\mathrm{r}^{\mathrm{2}} }{\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{r}−\mathrm{x}}+\mathrm{x}+\mathrm{r}}=\frac{\mathrm{r}^{\mathrm{2}} \left(\mathrm{r}−\mathrm{x}\right)}{\mathrm{r}^{\mathrm{2}} }=\mathrm{r}−\mathrm{x} \\ $$$$\Rightarrow\mathrm{a}×\mathrm{b}=\left(\mathrm{r}−\mathrm{x}\right)×\left(\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{r}−\mathrm{x}}\right)=\mathrm{x}^{\mathrm{2}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\blacksquare \\ $$
Commented by cherokeesay last updated on 18/Jan/25
splendid !  thank you sir !
$${splendid}\:! \\ $$$${thank}\:{you}\:{sir}\:! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *