Menu Close

Given-m-gt-0-n-gt-0-m-n-a-Find-the-range-of-a-such-that-m-1-m-n-1-n-gets-its-minimum-iff-m-n-




Question Number 215883 by CrispyXYZ last updated on 20/Jan/25
Given m>0, n>0, m+n=(√a).  Find the range of a such that  “(m+(1/m))(n+(1/n)) gets its minimum iff m=n”.
$$\mathrm{Given}\:{m}>\mathrm{0},\:{n}>\mathrm{0},\:{m}+{n}=\sqrt{{a}}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:{a}\:\mathrm{such}\:\mathrm{that} \\ $$$$“\left({m}+\frac{\mathrm{1}}{{m}}\right)\left({n}+\frac{\mathrm{1}}{{n}}\right)\:\mathrm{gets}\:\mathrm{its}\:\mathrm{minimum}\:\mathrm{iff}\:{m}={n}''. \\ $$
Commented by MathematicalUser2357 last updated on 21/Jan/25
“iff”? does it mean ifh.cc?
$$“{iff}''?\:{does}\:{it}\:{mean}\:{ifh}.{cc}? \\ $$
Commented by CrispyXYZ last updated on 21/Jan/25
“if and only if”.
$$“\mathrm{if}\:\mathrm{and}\:\mathrm{only}\:\mathrm{if}''. \\ $$
Answered by Eze120 last updated on 23/Jan/25
m=n  (m+m^(−1) )(m+m^(−1) )=m^2 +(m^(−1) )^2   2m=(√a)  2m^2 =a  m^2 =(a/2)  (m^(−1) )^2 =(1/m^2 )=(1/(a/2))  (a/2)+(1/(a/2))=(1/2)a+(2/a)  PD:It′s a guess, it′s not accurate.
$${m}={n} \\ $$$$\left({m}+{m}^{−\mathrm{1}} \right)\left({m}+{m}^{−\mathrm{1}} \right)={m}^{\mathrm{2}} +\left({m}^{−\mathrm{1}} \right)^{\mathrm{2}} \\ $$$$\mathrm{2}{m}=\sqrt{{a}} \\ $$$$\mathrm{2}{m}^{\mathrm{2}} ={a} \\ $$$${m}^{\mathrm{2}} =\frac{{a}}{\mathrm{2}} \\ $$$$\left({m}^{−\mathrm{1}} \right)^{\mathrm{2}} =\frac{\mathrm{1}}{{m}^{\mathrm{2}} }=\frac{\mathrm{1}}{{a}/\mathrm{2}} \\ $$$$\frac{{a}}{\mathrm{2}}+\frac{\mathrm{1}}{{a}/\mathrm{2}}=\left(\mathrm{1}/\mathrm{2}\right){a}+\frac{\mathrm{2}}{{a}} \\ $$$${PD}:{It}'{s}\:{a}\:{guess},\:{it}'{s}\:{not}\:{accurate}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *