Menu Close

for-any-natural-numbers-m-n-then-m-n-or-m-lt-n-or-m-gt-n-prove-




Question Number 215939 by mokys last updated on 21/Jan/25
for any natural numbers m,n then m=n or m<n or m>n ? prove
$${for}\:{any}\:{natural}\:{numbers}\:{m},{n}\:{then}\:{m}={n}\:{or}\:{m}<{n}\:{or}\:{m}>{n}\:?\:{prove} \\ $$
Answered by MrGaster last updated on 22/Jan/25
∀m,n∈N  m=n∨m<n∨m>n  ∵N⊂R∧R is totally ordered  Assume without loss of generality m≠n  m−n=0⇒m=n  m−n>0⇒m>n  m−n<0⇒m<n  By trichotomy property of real numbers  ∴m=n∨m<n∨m>0
$$\forall{m},{n}\in\mathbb{N} \\ $$$${m}={n}\vee{m}<{n}\vee{m}>{n} \\ $$$$\because\mathbb{N}\subset\mathbb{R}\wedge\mathbb{R}\:\mathrm{is}\:\mathrm{totally}\:\mathrm{ordered} \\ $$$$\mathrm{Assume}\:\mathrm{without}\:\mathrm{loss}\:\mathrm{of}\:\mathrm{generality}\:{m}\neq{n} \\ $$$${m}−{n}=\mathrm{0}\Rightarrow{m}={n} \\ $$$${m}−{n}>\mathrm{0}\Rightarrow{m}>{n} \\ $$$${m}−{n}<\mathrm{0}\Rightarrow{m}<{n} \\ $$$$\mathrm{By}\:\mathrm{trichotomy}\:\mathrm{property}\:\mathrm{of}\:\mathrm{real}\:\mathrm{numbers} \\ $$$$\therefore{m}={n}\vee{m}<{n}\vee{m}>\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *