Menu Close

lim-x-0-sin-2-2x-cos-x-1-3-cos-x-1-4-




Question Number 216055 by efronzo1 last updated on 26/Jan/25
  lim_(x→0)  ((sin^2 2x)/( ((cos x))^(1/3) −((cos x))^(1/4) )) =?
$$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:^{\mathrm{2}} \mathrm{2x}}{\:\sqrt[{\mathrm{3}}]{\mathrm{cos}\:\mathrm{x}}−\sqrt[{\mathrm{4}}]{\mathrm{cos}\:\mathrm{x}}}\:=? \\ $$
Answered by golsendro last updated on 27/Jan/25
  = lim_(x→0)  ((4cos^2 x(1−cos^2 x))/( ((cos x))^(1/3) −((cos x))^(1/4) ))    = 8. lim_(x→0)  ((1−cos x)/( ((cos x))^(1/3) −((cos x))^(1/4) ))   Let cos x= t^(12)     = 8 lim_(t→1)  ((1−t^(12) )/(t^4 −t^3 ))    = 8 lim_(t→1)  (((1−t)(t^(11) +t^(10) +...+1))/(t^3 (t−1)))    = −8.(12)= −96
$$\:\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{4cos}\:^{\mathrm{2}} \mathrm{x}\left(\mathrm{1}−\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}\right)}{\:\sqrt[{\mathrm{3}}]{\mathrm{cos}\:\mathrm{x}}−\sqrt[{\mathrm{4}}]{\mathrm{cos}\:\mathrm{x}}} \\ $$$$\:\:=\:\mathrm{8}.\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:\mathrm{x}}{\:\sqrt[{\mathrm{3}}]{\mathrm{cos}\:\mathrm{x}}−\sqrt[{\mathrm{4}}]{\mathrm{cos}\:\mathrm{x}}} \\ $$$$\:\mathrm{Let}\:\mathrm{cos}\:\mathrm{x}=\:\mathrm{t}^{\mathrm{12}} \\ $$$$\:\:=\:\mathrm{8}\:\underset{\mathrm{t}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{t}^{\mathrm{12}} }{\mathrm{t}^{\mathrm{4}} −\mathrm{t}^{\mathrm{3}} } \\ $$$$\:\:=\:\mathrm{8}\:\underset{\mathrm{t}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}−\mathrm{t}\right)\left(\mathrm{t}^{\mathrm{11}} +\mathrm{t}^{\mathrm{10}} +…+\mathrm{1}\right)}{\mathrm{t}^{\mathrm{3}} \left(\mathrm{t}−\mathrm{1}\right)} \\ $$$$\:\:=\:−\mathrm{8}.\left(\mathrm{12}\right)=\:−\mathrm{96} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *