Menu Close

Question-216245




Question Number 216245 by Tawa11 last updated on 01/Feb/25
Commented by Tawa11 last updated on 01/Feb/25
I can use cosine rule.  But I want to see if there is  better approach.
$$\mathrm{I}\:\mathrm{can}\:\mathrm{use}\:\mathrm{cosine}\:\mathrm{rule}. \\ $$$$\mathrm{But}\:\mathrm{I}\:\mathrm{want}\:\mathrm{to}\:\mathrm{see}\:\mathrm{if}\:\mathrm{there}\:\mathrm{is} \\ $$$$\mathrm{better}\:\mathrm{approach}. \\ $$
Commented by Tawa11 last updated on 01/Feb/25
I got   x  +  y  =  50.  But to proceed gives me  maths error.
$$\mathrm{I}\:\mathrm{got}\:\:\:\mathrm{x}\:\:+\:\:\mathrm{y}\:\:=\:\:\mathrm{50}. \\ $$$$\mathrm{But}\:\mathrm{to}\:\mathrm{proceed}\:\mathrm{gives}\:\mathrm{me}\:\:\mathrm{maths}\:\mathrm{error}. \\ $$
Commented by mr W last updated on 02/Feb/25
we can find x=30° purely  geometrically without using sine or   cosine rules.  show your solution using cosine rule.
$${we}\:{can}\:{find}\:{x}=\mathrm{30}°\:{purely} \\ $$$${geometrically}\:{without}\:{using}\:{sine}\:{or}\: \\ $$$${cosine}\:{rules}. \\ $$$${show}\:{your}\:{solution}\:{using}\:{cosine}\:{rule}. \\ $$
Commented by Tawa11 last updated on 01/Feb/25
Commented by Tawa11 last updated on 01/Feb/25
I represent those equal length as 1.  I leant that from you sir.         BD  =  (√(2  −  2cos40))  Then, I found BC.         BC  =  1^2   +  ((√(2  −  2cos40)))^2   −  2(1)(2  −  2cos40)cos130         BC  =  3  −  2cos40  −  2(2  −  2cos40)cos130  So,      ((sin x)/1)  =  ((sin130)/(3  −  2cos40  −  2(2  −  2cos40)cos130))  So, I am getting   x  approximately   32   now.
$$\mathrm{I}\:\mathrm{represent}\:\mathrm{those}\:\mathrm{equal}\:\mathrm{length}\:\mathrm{as}\:\mathrm{1}. \\ $$$$\mathrm{I}\:\mathrm{leant}\:\mathrm{that}\:\mathrm{from}\:\mathrm{you}\:\mathrm{sir}. \\ $$$$\:\:\:\:\:\:\:\mathrm{BD}\:\:=\:\:\sqrt{\mathrm{2}\:\:−\:\:\mathrm{2cos40}} \\ $$$$\mathrm{Then},\:\mathrm{I}\:\mathrm{found}\:\mathrm{BC}. \\ $$$$\:\:\:\:\:\:\:\mathrm{BC}\:\:=\:\:\mathrm{1}^{\mathrm{2}} \:\:+\:\:\left(\sqrt{\mathrm{2}\:\:−\:\:\mathrm{2cos40}}\right)^{\mathrm{2}} \:\:−\:\:\mathrm{2}\left(\mathrm{1}\right)\left(\mathrm{2}\:\:−\:\:\mathrm{2cos40}\right)\mathrm{cos130} \\ $$$$\:\:\:\:\:\:\:\mathrm{BC}\:\:=\:\:\mathrm{3}\:\:−\:\:\mathrm{2cos40}\:\:−\:\:\mathrm{2}\left(\mathrm{2}\:\:−\:\:\mathrm{2cos40}\right)\mathrm{cos130} \\ $$$$\mathrm{So},\:\:\:\:\:\:\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{1}}\:\:=\:\:\frac{\mathrm{sin130}}{\mathrm{3}\:\:−\:\:\mathrm{2cos40}\:\:−\:\:\mathrm{2}\left(\mathrm{2}\:\:−\:\:\mathrm{2cos40}\right)\mathrm{cos130}} \\ $$$$\mathrm{So},\:\mathrm{I}\:\mathrm{am}\:\mathrm{getting}\:\:\:\mathrm{x}\:\:\mathrm{approximately}\:\:\:\mathrm{32}\:\:\:\mathrm{now}. \\ $$
Commented by mr W last updated on 02/Feb/25
wrong!         BC^2   =  1^2   +  ((√(2  −  2cos40)))^2   −  2(1)(√(2  −  2cos40)) cos130
$${wrong}! \\ $$$$\:\:\:\:\:\:\:\mathrm{BC}^{\mathrm{2}} \:\:=\:\:\mathrm{1}^{\mathrm{2}} \:\:+\:\:\left(\sqrt{\mathrm{2}\:\:−\:\:\mathrm{2cos40}}\right)^{\mathrm{2}} \:\:−\:\:\mathrm{2}\left(\mathrm{1}\right)\sqrt{\mathrm{2}\:\:−\:\:\mathrm{2cos40}}\:\mathrm{cos130} \\ $$
Commented by Tawa11 last updated on 02/Feb/25
Ohhh.  How I did not see that?  Thank you sir, I really appreciate.
$$\mathrm{Ohhh}. \\ $$$$\mathrm{How}\:\mathrm{I}\:\mathrm{did}\:\mathrm{not}\:\mathrm{see}\:\mathrm{that}? \\ $$$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{sir},\:\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}. \\ $$
Answered by mr W last updated on 01/Feb/25
Commented by mr W last updated on 02/Feb/25
blue numbers indicate the steps  x=70−40=30°
$${blue}\:{numbers}\:{indicate}\:{the}\:{steps} \\ $$$${x}=\mathrm{70}−\mathrm{40}=\mathrm{30}° \\ $$
Commented by Tawa11 last updated on 02/Feb/25
Thanks sir.  I appreciate.
$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{appreciate}. \\ $$
Commented by ArshadS last updated on 02/Feb/25
Sir I  coudn′t understand step  5. How is it  40 ?
$${Sir}\:{I}\:\:{coudn}'{t}\:{understand}\:{step}\:\:\mathrm{5}.\:{How}\:{is}\:{it}\:\:\mathrm{40}\:? \\ $$
Commented by mr W last updated on 02/Feb/25
∠AED=60+40=100°  EA=ED   ⇒∠EAD=∠EDA=((180−100)/2)=40°
$$\angle{AED}=\mathrm{60}+\mathrm{40}=\mathrm{100}° \\ $$$${EA}={ED}\: \\ $$$$\Rightarrow\angle{EAD}=\angle{EDA}=\frac{\mathrm{180}−\mathrm{100}}{\mathrm{2}}=\mathrm{40}° \\ $$
Commented by ArshadS last updated on 03/Feb/25
Thanks Sir! I understood now.
$$\mathbb{T}\boldsymbol{\mathrm{han}}\Bbbk\boldsymbol{\mathrm{s}}\:\mathbb{S}\boldsymbol{\mathrm{ir}}!\:\mathrm{I}\:\mathrm{understood}\:\mathrm{now}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *