Menu Close

xe-x-x-1-2-dx-




Question Number 216372 by glory86 last updated on 06/Feb/25
∫((xe^x )/((x+1)^2 ))dx
$$\int\frac{{xe}^{{x}} }{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$
Answered by MrGaster last updated on 06/Feb/25
Let u=x+1⇒du=dx,x=u−1  ∫(((u−1)e^(u−1) )/u^2 )du=∫((ue^(u−1) )/u^2 )du−∫(e^(u−1) /u^2 )du  =∫(e^(u−1) /u)du−∫(e^(u−1) /u^2 )du  =∫(e^u /(ue))du−∫(e^u /(u^2 e))du  =(1/e)(∫(e^u /u)du−∫(e^u /u^2 ))du  =(1/e)(Ei(u)+(e^u /u))+C  =(e^(u−1) /u)+C=(e^x /(x+1))+C
$$\mathrm{Let}\:{u}={x}+\mathrm{1}\Rightarrow{du}={dx},{x}={u}−\mathrm{1} \\ $$$$\int\frac{\left({u}−\mathrm{1}\right){e}^{{u}−\mathrm{1}} }{{u}^{\mathrm{2}} }{du}=\int\frac{{ue}^{{u}−\mathrm{1}} }{{u}^{\mathrm{2}} }{du}−\int\frac{{e}^{{u}−\mathrm{1}} }{{u}^{\mathrm{2}} }{du} \\ $$$$=\int\frac{{e}^{{u}−\mathrm{1}} }{{u}}{du}−\int\frac{{e}^{{u}−\mathrm{1}} }{{u}^{\mathrm{2}} }{du} \\ $$$$=\int\frac{{e}^{{u}} }{{ue}}{du}−\int\frac{{e}^{{u}} }{{u}^{\mathrm{2}} {e}}{du} \\ $$$$=\frac{\mathrm{1}}{{e}}\left(\int\frac{{e}^{{u}} }{{u}}{du}−\int\frac{{e}^{{u}} }{{u}^{\mathrm{2}} }\right){du} \\ $$$$=\frac{\mathrm{1}}{{e}}\left(\mathrm{Ei}\left({u}\right)+\frac{{e}^{{u}} }{{u}}\right)+{C} \\ $$$$=\frac{{e}^{{u}−\mathrm{1}} }{{u}}+{C}=\frac{{e}^{{x}} }{{x}+\mathrm{1}}+{C} \\ $$
Answered by som(math1967) last updated on 06/Feb/25
 ∫((xe^x +e^x −e^x )/((x+1)^2 ))dx  =∫((e^x (x+1))/((x+1)^2 ))dx−∫(e^x /((x+1)^2 ))dx  =∫((e^x dx)/((x+1))) −∫(e^x /((x+1)^2 ))dx  =(1/((x+1)))∫e^x dx−∫{(d/dx)×(1/((x+1)))∫e^x dx}dx                  −∫(e^x /((x+1)^2 ))dx  =(e^x /((x+1))) +∫(e^x /((x+1)^2 ))dx −∫(e^x /((x+1)^2 ))dx  =(e^x /((x+1))) +C
$$\:\int\frac{{xe}^{{x}} +{e}^{{x}} −{e}^{{x}} }{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$$=\int\frac{{e}^{{x}} \left({x}+\mathrm{1}\right)}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }{dx}−\int\frac{{e}^{{x}} }{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$$=\int\frac{{e}^{{x}} {dx}}{\left({x}+\mathrm{1}\right)}\:−\int\frac{{e}^{{x}} }{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$$=\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)}\int{e}^{{x}} {dx}−\int\left\{\frac{{d}}{{dx}}×\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)}\int{e}^{{x}} {dx}\right\}{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\int\frac{{e}^{{x}} }{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$$=\frac{{e}^{{x}} }{\left({x}+\mathrm{1}\right)}\:+\int\frac{{e}^{{x}} }{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }{dx}\:−\int\frac{{e}^{{x}} }{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$$=\frac{{e}^{{x}} }{\left({x}+\mathrm{1}\right)}\:+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *