Question Number 216471 by Ismoiljon_008 last updated on 08/Feb/25

Commented by Ismoiljon_008 last updated on 08/Feb/25

$$\:\:\:{help},\:{please} \\ $$
Commented by mr W last updated on 08/Feb/25

$${a}\:{solution}\:{is}\:{given}\:{in}\:{Q}\mathrm{207018}. \\ $$$${an}\:{other}\:{solution}\:{see}\:{below}. \\ $$
Commented by Ismoiljon_008 last updated on 08/Feb/25

$$\:\:\:{thank}\:{you} \\ $$
Answered by mr W last updated on 08/Feb/25

Commented by mr W last updated on 08/Feb/25

$$\alpha+\beta=\frac{\pi}{\mathrm{2}} \\ $$$${p}=\mathrm{2}{r}\:\mathrm{sin}\:\alpha,\:{q}=\mathrm{2}{r}\:\mathrm{sin}\:\beta \\ $$$$\frac{{p}}{\mathrm{sin}\:\theta}=\frac{\mathrm{4}}{\mathrm{sin}\:\alpha} \\ $$$$\frac{{q}}{\mathrm{sin}\:\theta}=\frac{\mathrm{5}}{\mathrm{sin}\:\beta} \\ $$$$\frac{{p}}{{q}}=\frac{\mathrm{4}\:\mathrm{sin}\:\beta}{\mathrm{5}\:\mathrm{sin}\:\alpha}\:\Rightarrow\:\frac{\mathrm{sin}\:\alpha}{\mathrm{sin}\:\beta}=\frac{\mathrm{4}\:\mathrm{sin}\:\beta}{\mathrm{5}\:\mathrm{sin}\:\alpha} \\ $$$$\Rightarrow\mathrm{5}\:\mathrm{sin}^{\mathrm{2}} \:\alpha=\mathrm{4}\:\mathrm{sin}^{\mathrm{2}} \:\beta=\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:\alpha \\ $$$$\Rightarrow\mathrm{tan}^{\mathrm{2}} \:\alpha=\frac{\mathrm{4}}{\mathrm{5}}\:\Rightarrow\mathrm{tan}\:\alpha=\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}}\:\Rightarrow\mathrm{sin}\:\alpha=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\frac{\mathrm{2}{r}\:\mathrm{sin}\:\alpha}{\mathrm{sin}\:\theta}=\frac{\mathrm{4}}{\mathrm{sin}\:\alpha} \\ $$$$\Rightarrow\mathrm{sin}\:\theta=\frac{{r}\:\mathrm{sin}^{\mathrm{2}} \:\alpha}{\mathrm{2}}=\frac{{r}}{\mathrm{2}}×\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{2}} =\frac{\mathrm{2}{r}}{\mathrm{9}} \\ $$$$\left(\mathrm{2}{r}\right)^{\mathrm{2}} =\mathrm{10}^{\mathrm{2}} +\mathrm{9}^{\mathrm{2}} −\mathrm{2}×\mathrm{10}×\mathrm{9}\:\mathrm{cos}\:\left(\pi−\mathrm{2}\theta\right) \\ $$$$\mathrm{4}{r}^{\mathrm{2}} =\mathrm{181}+\mathrm{180}\:\mathrm{cos}\:\left(\mathrm{2}\theta\right) \\ $$$$\mathrm{4}{r}^{\mathrm{2}} =\mathrm{181}+\mathrm{180}\left(\mathrm{1}−\mathrm{2}×\frac{\mathrm{4}{r}^{\mathrm{2}} }{\mathrm{81}}\right) \\ $$$$\Rightarrow{r}=\frac{\mathrm{57}}{\mathrm{14}}\:\checkmark \\ $$