Menu Close

find-residuo-x-21-x-2-x-1-x-1-3-




Question Number 216489 by manxsol last updated on 09/Feb/25
find  residuo          ((x^(21) +x^2 +x+1)/((x−1)^3 ))
$${find}\:\:{residuo} \\ $$$$\:\:\:\:\:\:\:\:\frac{{x}^{\mathrm{21}} +{x}^{\mathrm{2}} +{x}+\mathrm{1}}{\left({x}−\mathrm{1}\right)^{\mathrm{3}} } \\ $$
Commented by issac last updated on 09/Feb/25
Q216493
$$\mathrm{Q216493} \\ $$
Answered by MrGaster last updated on 09/Feb/25
Let f(x)=((x^(21) +x^2 +1)/((x−1)^3 ))  Residue at x=1  Let z=x x−1⇒x=z+1  f(z+1)=(((z+1)^(21) +(z+1)^2 +(z+1)+1)/z^3 )  (z+1)^(21) =Σ_(k=0) ^(21)  (((21)),(k) )z^k   (z+1)^2 =z^2 +2z+1  (z+1)=z+1  f(z+1)=((Σ_(k=0) ^(21)  (((21)),(k) )z^k +z^2 +2z+1+z+1+1)/z^3 )  f(z+1)=((Σ_(k=0) ^(21)  (((21)),(k) )z^k +z^2 +3z+3)/z^3 )  z^2 in(z+1)^(21) is (((21)),(2) )  z^2 in z^2 +3z+3 is 1  Residue= (((21)),(2) )+1=210+1=211  Residue=211
$$\mathrm{Let}\:{f}\left({x}\right)=\frac{{x}^{\mathrm{21}} +{x}^{\mathrm{2}} +\mathrm{1}}{\left({x}−\mathrm{1}\right)^{\mathrm{3}} } \\ $$$$\mathrm{Residue}\:\mathrm{at}\:{x}=\mathrm{1} \\ $$$$\mathrm{Let}\:{z}={x}\:{x}−\mathrm{1}\Rightarrow{x}={z}+\mathrm{1} \\ $$$${f}\left({z}+\mathrm{1}\right)=\frac{\left({z}+\mathrm{1}\right)^{\mathrm{21}} +\left({z}+\mathrm{1}\right)^{\mathrm{2}} +\left({z}+\mathrm{1}\right)+\mathrm{1}}{{z}^{\mathrm{3}} } \\ $$$$\left({z}+\mathrm{1}\right)^{\mathrm{21}} =\underset{{k}=\mathrm{0}} {\overset{\mathrm{21}} {\sum}}\begin{pmatrix}{\mathrm{21}}\\{{k}}\end{pmatrix}{z}^{{k}} \\ $$$$\left({z}+\mathrm{1}\right)^{\mathrm{2}} ={z}^{\mathrm{2}} +\mathrm{2}{z}+\mathrm{1} \\ $$$$\left({z}+\mathrm{1}\right)={z}+\mathrm{1} \\ $$$${f}\left({z}+\mathrm{1}\right)=\frac{\underset{{k}=\mathrm{0}} {\overset{\mathrm{21}} {\sum}}\begin{pmatrix}{\mathrm{21}}\\{{k}}\end{pmatrix}{z}^{{k}} +{z}^{\mathrm{2}} +\mathrm{2}{z}+\mathrm{1}+{z}+\mathrm{1}+\mathrm{1}}{{z}^{\mathrm{3}} } \\ $$$${f}\left({z}+\mathrm{1}\right)=\frac{\underset{{k}=\mathrm{0}} {\overset{\mathrm{21}} {\sum}}\begin{pmatrix}{\mathrm{21}}\\{{k}}\end{pmatrix}{z}^{{k}} +{z}^{\mathrm{2}} +\mathrm{3}{z}+\mathrm{3}}{{z}^{\mathrm{3}} } \\ $$$${z}^{\mathrm{2}} \mathrm{in}\left({z}+\mathrm{1}\right)^{\mathrm{21}} \mathrm{is}\begin{pmatrix}{\mathrm{21}}\\{\mathrm{2}}\end{pmatrix} \\ $$$${z}^{\mathrm{2}} \mathrm{in}\:{z}^{\mathrm{2}} +\mathrm{3}{z}+\mathrm{3}\:\mathrm{is}\:\mathrm{1} \\ $$$$\mathrm{Residue}=\begin{pmatrix}{\mathrm{21}}\\{\mathrm{2}}\end{pmatrix}+\mathrm{1}=\mathrm{210}+\mathrm{1}=\mathrm{211} \\ $$$$\mathrm{Residue}=\mathrm{211} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *