Question Number 216491 by Jubr last updated on 09/Feb/25

Answered by MrGaster last updated on 09/Feb/25

$$\left(\mathrm{1}\right): \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}\int_{\mathrm{0}} ^{{x}} \left(\mathrm{1}−{t}^{\mathrm{2}} +\frac{{t}^{\mathrm{4}} }{\mathrm{2}!}−\frac{{t}^{\mathrm{6}} }{\mathrm{3}!}+\ldots\right){dt}}{\:\sqrt{\mathrm{1}−{e}^{−{x}^{\mathrm{2}} } }} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}\left({x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}}+\frac{{x}^{\mathrm{5}} }{\mathrm{10}}−\frac{{x}^{\mathrm{7}} }{\mathrm{3}!}+\ldots\right){dt}}{\:\sqrt{\mathrm{1}−{e}^{−{x}^{\mathrm{2}} } }} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}^{\mathrm{2}} −\frac{{x}^{\mathrm{4}} }{\mathrm{3}}+\frac{{x}^{\mathrm{6}} }{\mathrm{10}}−\frac{{x}^{\mathrm{8}} }{\mathrm{42}}+\ldots}{\:\sqrt{\mathrm{1}−{e}^{−{x}^{\mathrm{2}} } }} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}^{\mathrm{2}} }{\:\sqrt{\mathrm{1}−\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}+\frac{{x}^{\mathrm{4}} }{\mathrm{8}}−\frac{{x}^{\mathrm{6}} }{\mathrm{48}}+\ldots\right)}} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}^{\mathrm{2}} }{\:\sqrt{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}−\frac{{x}^{\mathrm{4}} }{\mathrm{8}}+\frac{{x}^{\mathrm{6}} }{\mathrm{24}}−\ldots}} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}\sqrt{\mathrm{2}}}{\:\sqrt{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}+\frac{{x}^{\mathrm{4}} }{\mathrm{24}}−\ldots}} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{x}\sqrt{\mathrm{2}} \\ $$$$=\begin{array}{|c|}{\mathrm{0}}\\\hline\end{array} \\ $$$$\left(\mathrm{2}\right): \\ $$$$\int_{\mathrm{0}} ^{{x}} {e}^{−{t}^{\mathrm{2}} } {dt}\approx{x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}}+\frac{{x}^{\mathrm{5}} }{\mathrm{10}}−\ldots \\ $$$${x}\int_{\mathrm{0}} ^{{x}} {e}^{−{t}^{\mathrm{2}} } {dt}\approx{x}^{\mathrm{2}} −\frac{{x}^{\mathrm{4}} }{\mathrm{3}}+\frac{{x}^{\mathrm{6}} }{\mathrm{10}}−\ldots \\ $$$$\sqrt{\mathrm{1}−{e}^{−{x}^{\mathrm{2}} } }\approx\sqrt{{x}^{\mathrm{2}} −\frac{{x}^{\mathrm{4}} }{\mathrm{2}}+\ldots}\approx{x}\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}+\ldots\right) \\ $$$$\frac{{x}\int_{\mathrm{0}} ^{{x}} {e}^{−{t}^{\mathrm{2}} } {dt}}{\:\sqrt{\mathrm{1}−{e}^{−{x}^{\mathrm{2}} } }}\approx\frac{{x}^{\mathrm{2}} −\frac{{x}^{\mathrm{4}} }{\mathrm{3}}}{{x}\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}\right)}\approx\frac{{x}\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{3}}\right)}{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}} \\ $$$$\approx{x}\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{12}}\right)\rightarrow\begin{array}{|c|}{\mathrm{0}}\\\hline\end{array} \\ $$
Commented by Jubr last updated on 09/Feb/25

$${Thanks}\:{sir}. \\ $$
Answered by mathmax last updated on 10/Feb/25

$${u}\left({x}\right)={x}\int_{\mathrm{0}} ^{{x}} \:{e}^{−{t}^{\mathrm{2}} } {dt}\:{et}\:{v}\left({x}\right)=\sqrt{\mathrm{1}−{e}^{−{x}^{\mathrm{2}} } } \\ $$$${lim}_{{x}\rightarrow\mathrm{0}} {u}\left({x}\right)={lim}_{{x}\rightarrow\mathrm{0}} {v}\left({x}\right)=\mathrm{0}\:{on}\:{applique}\:{l}\:{hospital} \\ $$$${l}={lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{{u}^{'} \left({x}\right)}{{v}^{'} \left({x}\right)}={lim}_{{x}\rightarrow\mathrm{0}} \frac{\int_{\mathrm{0}} ^{{x}} {e}^{−{t}^{\mathrm{2}} } {dt}+\:{xe}^{−{x}^{\mathrm{2}} } }{\frac{\mathrm{2}{xe}^{−{x}^{\mathrm{2}} } }{\mathrm{2}\sqrt{\mathrm{1}−{e}^{−{x}^{\mathrm{2}} } }}} \\ $$$$={lim}_{{x}\rightarrow\mathrm{0}} \frac{\sqrt{\mathrm{1}−{e}^{−{x}^{\mathrm{2}} } }\left(\int_{\mathrm{0}} ^{{x}} \:{e}^{−{t}^{\mathrm{2}} } {dt}+{xe}^{−{x}^{\mathrm{2}} } \right)}{{xe}^{−{x}^{\mathrm{2}} } } \\ $$$${we}\:{have}\:\:{e}^{−{x}^{\mathrm{2}} } \sim\mathrm{1}−{x}^{\mathrm{2}} \:\Rightarrow\mathrm{1}−{e}^{−{x}^{\mathrm{2}} } \sim{x}^{\mathrm{2}} \\ $$$${and}\:\sqrt{\mathrm{1}−{e}^{−{x}^{\mathrm{2}} } }\sim{x}\:\Rightarrow \\ $$$${l}={lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\frac{{x}\left(\int_{\mathrm{0}} ^{{x}} {e}^{−{t}^{\mathrm{2}} } {dt}+{xe}^{−{x}^{\mathrm{2}} } \right)}{{xe}^{−{x}^{\mathrm{2}} } } \\ $$$$={lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{\int_{\mathrm{0}} ^{{x}} {e}^{−{t}^{\mathrm{2}} } {dt}+{xe}^{−{x}^{\mathrm{2}} } }{{e}^{−{x}^{\mathrm{2}} } }=\frac{{o}}{\mathrm{1}}=\mathrm{0} \\ $$
Commented by Jubr last updated on 10/Feb/25

$${Thanks}\:{sir}. \\ $$