Menu Close

Question-216621




Question Number 216621 by Tawa11 last updated on 12/Feb/25
Answered by A5T last updated on 12/Feb/25
Commented by A5T last updated on 12/Feb/25
[OA_1 DT]=[ABCT] when both cars meet at time t  ⇒20t=((30(t−20+t−10))/2)⇒4t=3(2t−30)  ⇒t=45s⇒ s=20×45=900m  ⇒Sports car overtakes first car 45s and 900m   after car overtakes stationary sports car.
$$\left[\mathrm{OA}_{\mathrm{1}} \mathrm{DT}\right]=\left[\mathrm{ABCT}\right]\:\mathrm{when}\:\mathrm{both}\:\mathrm{cars}\:\mathrm{meet}\:\mathrm{at}\:\mathrm{time}\:\mathrm{t} \\ $$$$\Rightarrow\mathrm{20t}=\frac{\mathrm{30}\left(\mathrm{t}−\mathrm{20}+\mathrm{t}−\mathrm{10}\right)}{\mathrm{2}}\Rightarrow\mathrm{4t}=\mathrm{3}\left(\mathrm{2t}−\mathrm{30}\right) \\ $$$$\Rightarrow\mathrm{t}=\mathrm{45s}\Rightarrow\:\mathrm{s}=\mathrm{20}×\mathrm{45}=\mathrm{900m} \\ $$$$\Rightarrow\mathrm{Sports}\:\mathrm{car}\:\mathrm{overtakes}\:\mathrm{first}\:\mathrm{car}\:\mathrm{45s}\:\mathrm{and}\:\mathrm{900m}\: \\ $$$$\mathrm{after}\:\mathrm{car}\:\mathrm{overtakes}\:\mathrm{stationary}\:\mathrm{sports}\:\mathrm{car}. \\ $$
Commented by Tawa11 last updated on 12/Feb/25
Thanks sir.  I appreciate.
$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{appreciate}. \\ $$
Answered by mr W last updated on 12/Feb/25
Commented by mr W last updated on 12/Feb/25
distance is the area under the  corresponding v−t curve.  d=20x=((30×10)/2)+30(x−20)  ⇒x=45 s  ⇒d=20×45=900 m
$${distance}\:{is}\:{the}\:{area}\:{under}\:{the} \\ $$$${corresponding}\:{v}−{t}\:{curve}. \\ $$$${d}=\mathrm{20}{x}=\frac{\mathrm{30}×\mathrm{10}}{\mathrm{2}}+\mathrm{30}\left({x}−\mathrm{20}\right) \\ $$$$\Rightarrow{x}=\mathrm{45}\:{s} \\ $$$$\Rightarrow{d}=\mathrm{20}×\mathrm{45}=\mathrm{900}\:{m} \\ $$
Commented by Tawa11 last updated on 12/Feb/25
Thanks sir.  I appreciate.
$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{appreciate}. \\ $$
Commented by Tawa11 last updated on 14/Feb/25
Sirs, can this be solved without graph?
$$\mathrm{Sirs},\:\mathrm{can}\:\mathrm{this}\:\mathrm{be}\:\mathrm{solved}\:\mathrm{without}\:\mathrm{graph}? \\ $$
Commented by mr W last updated on 15/Feb/25
the solution above is without  graph! or you don′t understand it  without the graph?
$${the}\:{solution}\:{above}\:{is}\:{without} \\ $$$${graph}!\:{or}\:{you}\:{don}'{t}\:{understand}\:{it} \\ $$$${without}\:{the}\:{graph}? \\ $$
Commented by Tawa11 last updated on 15/Feb/25
I mean, can we solve analytically  without solving from graph?  Can we solve the distance and time  without drawing graph (v−t graph)?
$$\mathrm{I}\:\mathrm{mean},\:\mathrm{can}\:\mathrm{we}\:\mathrm{solve}\:\mathrm{analytically} \\ $$$$\mathrm{without}\:\mathrm{solving}\:\mathrm{from}\:\mathrm{graph}? \\ $$$$\mathrm{Can}\:\mathrm{we}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{distance}\:\mathrm{and}\:\mathrm{time} \\ $$$$\mathrm{without}\:\mathrm{drawing}\:\mathrm{graph}\:\left(\mathrm{v}−\mathrm{t}\:\mathrm{graph}\right)? \\ $$
Commented by mr W last updated on 15/Feb/25
they are exactly given above.  d_1 =20x  d_2 =((30×10)/2)+30(x−20)  with x=time
$${they}\:{are}\:{exactly}\:{given}\:{above}. \\ $$$${d}_{\mathrm{1}} =\mathrm{20}{x} \\ $$$${d}_{\mathrm{2}} =\frac{\mathrm{30}×\mathrm{10}}{\mathrm{2}}+\mathrm{30}\left({x}−\mathrm{20}\right) \\ $$$${with}\:{x}={time} \\ $$
Commented by Tawa11 last updated on 15/Feb/25
Ohh, I grab sir.  Thanks sir.
$$\mathrm{Ohh},\:\mathrm{I}\:\mathrm{grab}\:\mathrm{sir}. \\ $$$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *