Menu Close

let-y-1-y-2-y-3-y-p-be-fixed-positive-number-consider-the-sequences-s-n-y-1-n-y-2-n-y-3-n-y-p-n-p-and-x-n-s-n-1-n-n-N-show-that-x-n-is-m




Question Number 216710 by universe last updated on 16/Feb/25
   let y_1  , y_2  , y_(3  ) ... y_p  be fixed positive number     consider the sequences   s_n  =  ((y_1 ^n +y_2 ^n +y_3 ^n +...+y_p ^n )/p)   and x_(n ) = s_n ^(1/n)   ,   n∈N     show that {x_n } is monotonically increasing
$$\:\:\:\mathrm{let}\:{y}_{\mathrm{1}} \:,\:{y}_{\mathrm{2}} \:,\:{y}_{\mathrm{3}\:\:} …\:{y}_{{p}} \:\mathrm{be}\:\mathrm{fixed}\:\mathrm{positive}\:\mathrm{number} \\ $$$$\:\:\:\mathrm{consider}\:\mathrm{the}\:\mathrm{sequences} \\ $$$$\:{s}_{{n}} \:=\:\:\frac{{y}_{\mathrm{1}} ^{{n}} +{y}_{\mathrm{2}} ^{{n}} +{y}_{\mathrm{3}} ^{{n}} +…+{y}_{{p}} ^{{n}} }{{p}}\:\:\:{and}\:{x}_{{n}\:} =\:{s}_{{n}} ^{\mathrm{1}/{n}} \:\:,\:\:\:{n}\in\mathbb{N} \\ $$$$\:\:\:\mathrm{show}\:\mathrm{that}\:\left\{{x}_{{n}} \right\}\:\mathrm{is}\:\mathrm{monotonically}\:\mathrm{increasing} \\ $$
Answered by issac last updated on 16/Feb/25
Σ_(k=1) ^N  ∣A_k B_k ∣≤(Σ_(k=1) ^N  ∣A_k ∣^m )^(1/m) (Σ_(k=1) ^N  ∣B_k ∣^n )^(1/n)   s_n =(1/p)Σ_(k=1) ^p y_k ^n   x_n =s_n ^(1/n) =(1/p^(1/n) )(Σ_(k=1) ^p y_k ^n )^(1/n)   and Lets fix B_k =1  (Σ_(k=1) ^p  1^q )^(1/q) =p^(1/q)   Σ_(k=1) ^p  ∣y_k ∣≤p^((1/q)−(1/n)) x_n   ∴ x_n  decrease
$$\underset{{k}=\mathrm{1}} {\overset{{N}} {\sum}}\:\mid{A}_{{k}} {B}_{{k}} \mid\leq\left(\underset{{k}=\mathrm{1}} {\overset{{N}} {\sum}}\:\mid{A}_{{k}} \mid^{{m}} \right)^{\mathrm{1}/{m}} \left(\underset{{k}=\mathrm{1}} {\overset{{N}} {\sum}}\:\mid{B}_{{k}} \mid^{{n}} \right)^{\mathrm{1}/{n}} \\ $$$${s}_{{n}} =\frac{\mathrm{1}}{{p}}\underset{{k}=\mathrm{1}} {\overset{{p}} {\sum}}{y}_{{k}} ^{{n}} \\ $$$${x}_{{n}} ={s}_{{n}} ^{\frac{\mathrm{1}}{{n}}} =\frac{\mathrm{1}}{{p}^{\frac{\mathrm{1}}{{n}}} }\left(\underset{{k}=\mathrm{1}} {\overset{{p}} {\sum}}{y}_{{k}} ^{{n}} \right)^{\frac{\mathrm{1}}{{n}}} \\ $$$$\mathrm{and}\:\mathrm{Lets}\:\mathrm{fix}\:\mathrm{B}_{{k}} =\mathrm{1} \\ $$$$\left(\underset{\mathrm{k}=\mathrm{1}} {\overset{{p}} {\sum}}\:\mathrm{1}^{{q}} \right)^{\frac{\mathrm{1}}{{q}}} ={p}^{\frac{\mathrm{1}}{{q}}} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{p}} {\sum}}\:\mid{y}_{{k}} \mid\leq{p}^{\frac{\mathrm{1}}{{q}}−\frac{\mathrm{1}}{{n}}} {x}_{{n}} \\ $$$$\therefore\:{x}_{{n}} \:{decrease} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *