Menu Close

find-tan-2-x-1-sec-4-x-dx-




Question Number 216774 by Nadirhashim last updated on 19/Feb/25
  find ∫ ((tan^2 (x) )/(1+sec^4 (x))) .dx
$$\:\:\boldsymbol{{find}}\:\int\:\frac{\boldsymbol{{tan}}^{\mathrm{2}} \left(\boldsymbol{{x}}\right)\:}{\mathrm{1}+\boldsymbol{{sec}}^{\mathrm{4}} \left(\boldsymbol{{x}}\right)}\:.\boldsymbol{{dx}}\: \\ $$
Answered by MathematicalUser2357 last updated on 25/Feb/25
(1/2){−2x+(√(1−i))tan^(−1) (((tan(x))/( (√(1−i)))))+(√(1+i))tan^(−1) (((tan(x))/( (√(1+i)))))}+C
$$\frac{\mathrm{1}}{\mathrm{2}}\left\{−\mathrm{2}{x}+\sqrt{\mathrm{1}−{i}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{tan}\left({x}\right)}{\:\sqrt{\mathrm{1}−{i}}}\right)+\sqrt{\mathrm{1}+{i}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{tan}\left({x}\right)}{\:\sqrt{\mathrm{1}+{i}}}\right)\right\}+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *