Menu Close

Prove-x-R-cos-x-cos-2x-cos-nx-n-1-2-n-Z-gt-0-




Question Number 216830 by MrGaster last updated on 22/Feb/25
Prove:∀x∈R,∣cos x∣+∣cos 2x∣+…+∣cos nx∣≥((n−1)/2)(n∈Z_(>0) )
$$\mathrm{Prove}:\forall{x}\in\mathbb{R},\mid\mathrm{cos}\:{x}\mid+\mid\mathrm{cos}\:\mathrm{2}{x}\mid+\ldots+\mid\mathrm{cos}\:{nx}\mid\geq\frac{{n}−\mathrm{1}}{\mathrm{2}}\left({n}\in\mathbb{Z}_{>\mathrm{0}} \right)\:\: \\ $$
Commented by MathematicalUser2357 last updated on 25/Feb/25
Or you could do {n∣n∈Z∧n>0} (or {n∣n∈N})
$$\mathrm{Or}\:\mathrm{you}\:\mathrm{could}\:\mathrm{do}\:\left\{{n}\mid{n}\in\mathbb{Z}\wedge{n}>\mathrm{0}\right\}\:\left(\mathrm{or}\:\left\{{n}\mid{n}\in\mathbb{N}\right\}\right) \\ $$
Answered by MrGaster last updated on 23/Feb/25
Prove:Σ_(k=1) ^n ∣cos(kπ)∣≥((n−1)/2) (n ∈ Z_(>0) )  Let S_n (x)=Σ_(k=1) ^n ∣cos(kx)∣  ⇒S_n (x)=∣cos(x)∣+∣cos(2x)∣+…+∣cos(nx)∣  Consider T_n (x)=Σ_(k=1) ^n cos(kπ)  =((sin(((nx)/2))cos((((n+1)x)/2)))/(sin((x/2))))  ⇒∣T_n (x)∣≤(1/(∣sin((x/2))∣))  Let U_n (x)=Σ_(k=1) ^n cos^2 (kπ)  =(n/2)+(1/2)Σ_(k=1) ^n cos(2kx)  =(n/2)+(1/2)(((sin(nx)cos((n+1)x))/(sin(x))))  ⇒U_n (x)≤(n/2)+(1/2)  ∵ ∣cos(kx)∣≥cos^2 (kx)  ⇒S_n (x)≥U_n (x)  ⇒S_n (x)≥(n/2)−(1/2)  ∴S_n (x)≥((n−1)/2)  [Q.E.D]
$$\mathrm{Prove}:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\mid\mathrm{cos}\left({k}\pi\right)\mid\geq\frac{{n}−\mathrm{1}}{\mathrm{2}}\:\left({n}\:\in\:\mathbb{Z}_{>\mathrm{0}} \right) \\ $$$$\mathrm{Let}\:{S}_{{n}} \left({x}\right)=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\mid\mathrm{cos}\left({kx}\right)\mid \\ $$$$\Rightarrow{S}_{{n}} \left({x}\right)=\mid\mathrm{cos}\left({x}\right)\mid+\mid\mathrm{cos}\left(\mathrm{2}{x}\right)\mid+\ldots+\mid\mathrm{cos}\left({nx}\right)\mid \\ $$$$\mathrm{Consider}\:{T}_{{n}} \left({x}\right)=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{cos}\left({k}\pi\right) \\ $$$$=\frac{\mathrm{sin}\left(\frac{{nx}}{\mathrm{2}}\right)\mathrm{cos}\left(\frac{\left({n}+\mathrm{1}\right){x}}{\mathrm{2}}\right)}{\mathrm{sin}\left(\frac{{x}}{\mathrm{2}}\right)} \\ $$$$\Rightarrow\mid{T}_{{n}} \left({x}\right)\mid\leq\frac{\mathrm{1}}{\mid\mathrm{sin}\left(\frac{{x}}{\mathrm{2}}\right)\mid} \\ $$$$\mathrm{Let}\:{U}_{{n}} \left({x}\right)=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{cos}^{\mathrm{2}} \left({k}\pi\right) \\ $$$$=\frac{{n}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{cos}\left(\mathrm{2}{kx}\right) \\ $$$$=\frac{{n}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{sin}\left({nx}\right)\mathrm{cos}\left(\left({n}+\mathrm{1}\right){x}\right)}{\mathrm{sin}\left({x}\right)}\right) \\ $$$$\Rightarrow{U}_{{n}} \left({x}\right)\leq\frac{{n}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\because\:\mid\mathrm{cos}\left({kx}\right)\mid\geq\mathrm{cos}^{\mathrm{2}} \left({kx}\right) \\ $$$$\Rightarrow{S}_{{n}} \left({x}\right)\geq{U}_{{n}} \left({x}\right) \\ $$$$\Rightarrow{S}_{{n}} \left({x}\right)\geq\frac{{n}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\therefore{S}_{{n}} \left({x}\right)\geq\frac{{n}−\mathrm{1}}{\mathrm{2}} \\ $$$$\left[\mathrm{Q}.\mathrm{E}.\mathrm{D}\right] \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *