Menu Close

Question-216859




Question Number 216859 by ajfour last updated on 23/Feb/25
Commented by ajfour last updated on 23/Feb/25
Radius of inner disc is R. As it rolls up  the outer circular track of radius 2R, find  equation of trajectory of a point P on the  wheel until it comes into contact with  the outer track.
$${Radius}\:{of}\:{inner}\:{disc}\:{is}\:{R}.\:{As}\:{it}\:{rolls}\:{up} \\ $$$${the}\:{outer}\:{circular}\:{track}\:{of}\:{radius}\:\mathrm{2}{R},\:{find} \\ $$$${equation}\:{of}\:{trajectory}\:{of}\:{a}\:{point}\:\boldsymbol{{P}}\:{on}\:{the} \\ $$$${wheel}\:{until}\:{it}\:{comes}\:{into}\:{contact}\:{with} \\ $$$${the}\:{outer}\:{track}. \\ $$
Commented by mr W last updated on 23/Feb/25
for R=2r the locus of P is a diameter  of the outer circle.
$${for}\:{R}=\mathrm{2}{r}\:{the}\:{locus}\:{of}\:{P}\:{is}\:{a}\:{diameter} \\ $$$${of}\:{the}\:{outer}\:{circle}. \\ $$
Commented by mr W last updated on 23/Feb/25
Answered by mr W last updated on 23/Feb/25
Commented by mr W last updated on 23/Feb/25
say n=(R/r)  rϕ=Rθ  ⇒ϕ=((Rθ)/r)  x_P =(R−r)sin θ+r sin (ϕ+α−θ)  ⇒(x_P /r)=(n−1) sin θ+sin [(n−1)θ+α]  y_P =R−(R−r)cos θ+r cos (ϕ+α−θ)  ⇒(y_P /r)=n−(n−1) cos θ+cos [(n−1)θ+α]
$${say}\:{n}=\frac{{R}}{{r}} \\ $$$${r}\varphi={R}\theta \\ $$$$\Rightarrow\varphi=\frac{{R}\theta}{{r}} \\ $$$${x}_{{P}} =\left({R}−{r}\right)\mathrm{sin}\:\theta+{r}\:\mathrm{sin}\:\left(\varphi+\alpha−\theta\right) \\ $$$$\Rightarrow\frac{{x}_{{P}} }{{r}}=\left({n}−\mathrm{1}\right)\:\mathrm{sin}\:\theta+\mathrm{sin}\:\left[\left({n}−\mathrm{1}\right)\theta+\alpha\right] \\ $$$${y}_{{P}} ={R}−\left({R}−{r}\right)\mathrm{cos}\:\theta+{r}\:\mathrm{cos}\:\left(\varphi+\alpha−\theta\right) \\ $$$$\Rightarrow\frac{{y}_{{P}} }{{r}}={n}−\left({n}−\mathrm{1}\right)\:\mathrm{cos}\:\theta+\mathrm{cos}\:\left[\left({n}−\mathrm{1}\right)\theta+\alpha\right] \\ $$
Commented by mr W last updated on 23/Feb/25
Commented by mr W last updated on 23/Feb/25
Commented by mr W last updated on 23/Feb/25
Commented by mr W last updated on 23/Feb/25
Commented by mr W last updated on 23/Feb/25
Commented by ajfour last updated on 23/Feb/25
Wow! Thank you.
$${Wow}!\:{Thank}\:{you}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *