Menu Close

give-a-recurrence-relation-for-I-n-I-n-0-1-x-n-x-3-dx-n-N-




Question Number 216918 by mathocean1 last updated on 24/Feb/25
give a recurrence relation for I_n .  I_n =∫_0 ^1 (x^n /(x+3))dx, ∀n ∈ N.
$${give}\:{a}\:{recurrence}\:{relation}\:{for}\:{I}_{{n}} . \\ $$$${I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{n}} }{{x}+\mathrm{3}}{dx},\:\forall{n}\:\in\:\mathbb{N}. \\ $$
Answered by Wuji last updated on 24/Feb/25
I_n =∫_0 ^1 (x^n /(x+3))dx ,∀n∈N  (x^n =x^(n−1) x=x^(n−1) ((x+3)−3)  (x^n /(x+3))=((x^(n−1) ((x+3)−3))/((x+3)))=x^(n−1) −3(x^(n−1) /(x+3))  I_n =∫_0 ^1 (x^n /(x+3))dx =∫_0 ^1 (x^(n−1) −3(x^(n−1) /(x+3)))dx  ∫_0 ^1 x^(n−1) dx=(1/n)    , ∫_0 ^1 (x^(n−1) /(x−3))dx=I_(n−1)   I_n =(1/n)−3I_(n−1)
$$\mathrm{I}_{\mathrm{n}} =\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{\mathrm{x}^{\mathrm{n}} }{\mathrm{x}+\mathrm{3}}\mathrm{dx}\:,\forall\mathrm{n}\in\mathbb{N} \\ $$$$\left(\mathrm{x}^{\mathrm{n}} =\mathrm{x}^{\mathrm{n}−\mathrm{1}} \mathrm{x}=\mathrm{x}^{\mathrm{n}−\mathrm{1}} \left(\left(\mathrm{x}+\mathrm{3}\right)−\mathrm{3}\right)\right. \\ $$$$\frac{\mathrm{x}^{\mathrm{n}} }{\mathrm{x}+\mathrm{3}}=\frac{\mathrm{x}^{\mathrm{n}−\mathrm{1}} \left(\left(\mathrm{x}+\mathrm{3}\right)−\mathrm{3}\right)}{\left(\mathrm{x}+\mathrm{3}\right)}=\mathrm{x}^{\mathrm{n}−\mathrm{1}} −\mathrm{3}\frac{\mathrm{x}^{\mathrm{n}−\mathrm{1}} }{\mathrm{x}+\mathrm{3}} \\ $$$$\mathrm{I}_{\mathrm{n}} =\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{\mathrm{x}^{\mathrm{n}} }{\mathrm{x}+\mathrm{3}}\mathrm{dx}\:=\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\left(\mathrm{x}^{\mathrm{n}−\mathrm{1}} −\mathrm{3}\frac{\mathrm{x}^{\mathrm{n}−\mathrm{1}} }{\mathrm{x}+\mathrm{3}}\right)\mathrm{dx} \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\mathrm{x}^{\mathrm{n}−\mathrm{1}} \mathrm{dx}=\frac{\mathrm{1}}{\mathrm{n}}\:\:\:\:,\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{\mathrm{x}^{\mathrm{n}−\mathrm{1}} }{\mathrm{x}−\mathrm{3}}\mathrm{dx}=\mathrm{I}_{\mathrm{n}−\mathrm{1}} \\ $$$$\mathrm{I}_{\mathrm{n}} =\frac{\mathrm{1}}{\mathrm{n}}−\mathrm{3I}_{\mathrm{n}−\mathrm{1}} \\ $$
Commented by mathocean1 last updated on 24/Feb/25
Thank you sir...
$${Thank}\:{you}\:{sir}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *