Menu Close

Question-216919




Question Number 216919 by Abdullahrussell last updated on 24/Feb/25
Answered by Wuji last updated on 24/Feb/25
α^3 −3α^2 +5α−17=0−−−−−1  β^3 −3β^2 +5β+11=0−−−−−2  (1)+(2)  α^3 +β^3 −3α^2 −3β^2 +5α+5β−6=0  α^3 +β^3 −3(α^2 +β^2 )+5(α+β)−6=0  α^2 +β^2 =(α+β)^2 −2αβ  let α+β=S , αβ=P  α^3 +β^3 =S(S^2 −3P)  S(S^2 −3P)−3(S^2 −2P)+5S−6=0  S^3 −3S^2 −3SP+5S+6P−6=0  S^3 −3S^2 +5S−6−3SP+6P=0  S^3 −3S^2 +5S−6+P(−3S+6)=0  (S−2)(S^2 −S+3)+P(−3S+6)=0  (S−2)(S^2 −S+3)=0  S=2  Thus P(−3S+6) vanishes since S=2  S=α+β=2
$$\alpha^{\mathrm{3}} −\mathrm{3}\alpha^{\mathrm{2}} +\mathrm{5}\alpha−\mathrm{17}=\mathrm{0}−−−−−\mathrm{1} \\ $$$$\beta^{\mathrm{3}} −\mathrm{3}\beta^{\mathrm{2}} +\mathrm{5}\beta+\mathrm{11}=\mathrm{0}−−−−−\mathrm{2} \\ $$$$\left(\mathrm{1}\right)+\left(\mathrm{2}\right) \\ $$$$\alpha^{\mathrm{3}} +\beta^{\mathrm{3}} −\mathrm{3}\alpha^{\mathrm{2}} −\mathrm{3}\beta^{\mathrm{2}} +\mathrm{5}\alpha+\mathrm{5}\beta−\mathrm{6}=\mathrm{0} \\ $$$$\alpha^{\mathrm{3}} +\beta^{\mathrm{3}} −\mathrm{3}\left(\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} \right)+\mathrm{5}\left(\alpha+\beta\right)−\mathrm{6}=\mathrm{0} \\ $$$$\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} =\left(\alpha+\beta\right)^{\mathrm{2}} −\mathrm{2}\alpha\beta \\ $$$$\mathrm{let}\:\alpha+\beta=\mathrm{S}\:,\:\alpha\beta=\mathrm{P} \\ $$$$\alpha^{\mathrm{3}} +\beta^{\mathrm{3}} =\mathrm{S}\left(\mathrm{S}^{\mathrm{2}} −\mathrm{3P}\right) \\ $$$$\mathrm{S}\left(\mathrm{S}^{\mathrm{2}} −\mathrm{3P}\right)−\mathrm{3}\left(\mathrm{S}^{\mathrm{2}} −\mathrm{2P}\right)+\mathrm{5S}−\mathrm{6}=\mathrm{0} \\ $$$$\mathrm{S}^{\mathrm{3}} −\mathrm{3S}^{\mathrm{2}} −\mathrm{3SP}+\mathrm{5S}+\mathrm{6P}−\mathrm{6}=\mathrm{0} \\ $$$$\mathrm{S}^{\mathrm{3}} −\mathrm{3S}^{\mathrm{2}} +\mathrm{5S}−\mathrm{6}−\mathrm{3SP}+\mathrm{6P}=\mathrm{0} \\ $$$$\mathrm{S}^{\mathrm{3}} −\mathrm{3S}^{\mathrm{2}} +\mathrm{5S}−\mathrm{6}+\mathrm{P}\left(−\mathrm{3S}+\mathrm{6}\right)=\mathrm{0} \\ $$$$\left(\mathrm{S}−\mathrm{2}\right)\left(\mathrm{S}^{\mathrm{2}} −\mathrm{S}+\mathrm{3}\right)+\mathrm{P}\left(−\mathrm{3S}+\mathrm{6}\right)=\mathrm{0} \\ $$$$\left(\mathrm{S}−\mathrm{2}\right)\left(\mathrm{S}^{\mathrm{2}} −\mathrm{S}+\mathrm{3}\right)=\mathrm{0} \\ $$$$\mathrm{S}=\mathrm{2} \\ $$$$\mathrm{Thus}\:\mathrm{P}\left(−\mathrm{3S}+\mathrm{6}\right)\:\mathrm{vanishes}\:\mathrm{since}\:\mathrm{S}=\mathrm{2} \\ $$$$\mathrm{S}=\alpha+\beta=\mathrm{2} \\ $$$$ \\ $$
Answered by Frix last updated on 25/Feb/25
x=α−1∧y=β−1  x^3 +2x−14=0  y^3 +2y+14=0  (x^3 +y^3 )+2(x+y)=0  (x+y)(x^2 −xy+y^2 +2)=0  x+y=0  α+β=2
$${x}=\alpha−\mathrm{1}\wedge{y}=\beta−\mathrm{1} \\ $$$${x}^{\mathrm{3}} +\mathrm{2}{x}−\mathrm{14}=\mathrm{0} \\ $$$${y}^{\mathrm{3}} +\mathrm{2}{y}+\mathrm{14}=\mathrm{0} \\ $$$$\left({x}^{\mathrm{3}} +{y}^{\mathrm{3}} \right)+\mathrm{2}\left({x}+{y}\right)=\mathrm{0} \\ $$$$\left({x}+{y}\right)\left({x}^{\mathrm{2}} −{xy}+{y}^{\mathrm{2}} +\mathrm{2}\right)=\mathrm{0} \\ $$$${x}+{y}=\mathrm{0} \\ $$$$\alpha+\beta=\mathrm{2} \\ $$
Commented by Abdullahrussell last updated on 25/Feb/25
  Sir, great solutions. Thanks.
$$\:\:{Sir},\:{great}\:{solutions}.\:{Thanks}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *