Menu Close

Find-all-positive-integers-n-such-that-n-1-divides-n-2-1-




Question Number 217030 by ArshadS last updated on 27/Feb/25
Find all positive integers  n  such that     n + 1  divides  n^2  + 1
$$\mathrm{Find}\:\mathrm{all}\:\mathrm{positive}\:\mathrm{integers}\:\:\mathrm{n}\:\:\mathrm{such}\:\mathrm{that}\:\: \\ $$$$\:\mathrm{n}\:+\:\mathrm{1}\:\:\mathrm{divides}\:\:\mathrm{n}^{\mathrm{2}} \:+\:\mathrm{1} \\ $$
Answered by issac last updated on 27/Feb/25
((n+1)/(n^2 +1))=((n+1)/((1+ni)(1−ni)))  ((n+1)/2)((1/(1+ni))+(1/(1−ni)))  n=2Z−1
$$\frac{{n}+\mathrm{1}}{{n}^{\mathrm{2}} +\mathrm{1}}=\frac{{n}+\mathrm{1}}{\left(\mathrm{1}+{n}\boldsymbol{{i}}\right)\left(\mathrm{1}−{n}\boldsymbol{{i}}\right)} \\ $$$$\frac{{n}+\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{1}+{n}\boldsymbol{{i}}}+\frac{\mathrm{1}}{\mathrm{1}−{n}\boldsymbol{{i}}}\right) \\ $$$${n}=\mathrm{2}\mathbb{Z}−\mathrm{1}\: \\ $$
Commented by Frix last updated on 27/Feb/25
“a divides b” means a×n=b  ⇔ (b/a)=n not  b×n=a ⇔ (a/b)=n  You must test ((n^2 +1)/(n+1)) not ((n+1)/(n^2 +1))
$$“{a}\:\mathrm{divides}\:{b}''\:\mathrm{means}\:{a}×{n}={b}\:\:\Leftrightarrow\:\frac{{b}}{{a}}={n}\:\mathrm{not} \\ $$$$\cancel{{b}×{n}={a}\:\Leftrightarrow\:\frac{{a}}{{b}}={n}} \\ $$$$\mathrm{You}\:\mathrm{must}\:\mathrm{test}\:\frac{{n}^{\mathrm{2}} +\mathrm{1}}{{n}+\mathrm{1}}\:\mathrm{not}\:\cancel{\frac{{n}+\mathrm{1}}{{n}^{\mathrm{2}} +\mathrm{1}}} \\ $$
Answered by Ghisom last updated on 27/Feb/25
((n^2 +1)/(n+1))=n−1+(2/(n+1))  for n∈Z we get n∈{−3, −2, 0, 1}  ⇒  answer for n>0 is n=1
$$\frac{{n}^{\mathrm{2}} +\mathrm{1}}{{n}+\mathrm{1}}={n}−\mathrm{1}+\frac{\mathrm{2}}{{n}+\mathrm{1}} \\ $$$$\mathrm{for}\:{n}\in\mathbb{Z}\:\mathrm{we}\:\mathrm{get}\:{n}\in\left\{−\mathrm{3},\:−\mathrm{2},\:\mathrm{0},\:\mathrm{1}\right\} \\ $$$$\Rightarrow \\ $$$$\mathrm{answer}\:\mathrm{for}\:{n}>\mathrm{0}\:\mathrm{is}\:{n}=\mathrm{1} \\ $$
Commented by ArshadS last updated on 27/Feb/25
nice! thank you sir!
$${nice}!\:{thank}\:{you}\:{sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *