Menu Close

determiner-le-cote-du-care-ABCD-inscrit-dans-l-elipse-3-3-8-8-




Question Number 217146 by a.lgnaoui last updated on 02/Mar/25
determiner le cote du care ABCD  inscrit dans l elipse {(−3,+3):(−8,+8)}
$$\mathrm{determiner}\:\mathrm{le}\:\mathrm{cote}\:\mathrm{du}\:\mathrm{care}\:\boldsymbol{\mathrm{ABCD}} \\ $$$$\mathrm{inscrit}\:\mathrm{dans}\:\mathrm{l}\:\mathrm{elipse}\:\left\{\left(−\mathrm{3},+\mathrm{3}\right):\left(−\mathrm{8},+\mathrm{8}\right)\right\} \\ $$
Commented by a.lgnaoui last updated on 02/Mar/25
Answered by mr W last updated on 03/Mar/25
square s×s inscribed in ellipse  (x^2 /a^2 )+(y^2 /b^2 )=1  we have  ((((s/2))^2 )/a^2 )+((((s/2))^2 )/b^2 )=1  s^2 =((4a^2 b^2 )/(a^2 +b^2 ))  ⇒s=((2ab)/( (√(a^2 +b^2 ))))  in this example: a=3, b=8
$${square}\:{s}×{s}\:{inscribed}\:{in}\:{ellipse} \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$${we}\:{have} \\ $$$$\frac{\left(\frac{{s}}{\mathrm{2}}\right)^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{\left(\frac{{s}}{\mathrm{2}}\right)^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$${s}^{\mathrm{2}} =\frac{\mathrm{4}{a}^{\mathrm{2}} {b}^{\mathrm{2}} }{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$$\Rightarrow{s}=\frac{\mathrm{2}{ab}}{\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }} \\ $$$${in}\:{this}\:{example}:\:{a}=\mathrm{3},\:{b}=\mathrm{8} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *