Menu Close

Given-a-n-1-a-n-a-n-2-where-a-3-4-and-a-5-6-find-a-n-




Question Number 217190 by efronzo1 last updated on 05/Mar/25
Given a_(n+1)  = a_n  + a_(n+2)      where a_3 = 4 and a_5 = 6   find a_n  .
$$\mathrm{Given}\:\mathrm{a}_{\mathrm{n}+\mathrm{1}} \:=\:\mathrm{a}_{\mathrm{n}} \:+\:\mathrm{a}_{\mathrm{n}+\mathrm{2}} \: \\ $$$$\:\:\mathrm{where}\:\mathrm{a}_{\mathrm{3}} =\:\mathrm{4}\:\mathrm{and}\:\mathrm{a}_{\mathrm{5}} =\:\mathrm{6} \\ $$$$\:\mathrm{find}\:\mathrm{a}_{\mathrm{n}} \:. \\ $$
Answered by mathmax last updated on 05/Mar/25
a_(n+2) −a_(n+1) −a_n =0 l equation caractetistique est  x^2 −x−1=0  Δ=1+4=5  donc les racines  x_1 =((1+(√5))/2) et x_2 =((1−(√5))/2)  a_n =α (((1+(√5))/2))^n  +β(((1−(√5))/2))^n   a_3 =(((1+(√5))/2))^3 α +(((1−(√5))/2))^3 β=4  a_5 =(((1+(√5))/2))^5 α +(((1−(√5))/2))^5 β =6  puis on  resoud le systeme lineaire en α et β....
$${a}_{{n}+\mathrm{2}} −{a}_{{n}+\mathrm{1}} −{a}_{{n}} =\mathrm{0}\:{l}\:{equation}\:{caractetistique}\:{est} \\ $$$${x}^{\mathrm{2}} −{x}−\mathrm{1}=\mathrm{0} \\ $$$$\Delta=\mathrm{1}+\mathrm{4}=\mathrm{5}\:\:{donc}\:{les}\:{racines} \\ $$$${x}_{\mathrm{1}} =\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\:{et}\:{x}_{\mathrm{2}} =\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$${a}_{{n}} =\alpha\:\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}} \:+\beta\left(\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}} \\ $$$${a}_{\mathrm{3}} =\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{\mathrm{3}} \alpha\:+\left(\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{\mathrm{3}} \beta=\mathrm{4} \\ $$$${a}_{\mathrm{5}} =\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{\mathrm{5}} \alpha\:+\left(\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{\mathrm{5}} \beta\:=\mathrm{6}\:\:{puis}\:{on} \\ $$$${resoud}\:{le}\:{systeme}\:{lineaire}\:{en}\:\alpha\:{et}\:\beta…. \\ $$
Answered by mr W last updated on 05/Mar/25
a_(n+2) −a_(n+1) +a_n =0  characteristic equation:  r^2 −r+1=0  ⇒r_(1,2) =((1±i(√3))/2)=e^(±((πi)/3))   say a_n =Ae^((nπi)/3) +Be^(−((nπi)/3))   or a_n =C cos ((nπ)/3)+D sin ((nπ)/3)  a_3 =−C=4 ⇒C=−4  a_5 =−4 cos ((5π)/3)+D sin ((5π)/3)=6 ⇒D=−((16)/( (√3)))  ⇒a_n =−4(cos ((nπ)/3)+(4/( (√3))) sin ((nπ)/3))  or  a_n =−((4(√(57)))/( 3)) sin (((nπ)/3)+tan^(−1) ((√3)/4))
$${a}_{{n}+\mathrm{2}} −{a}_{{n}+\mathrm{1}} +{a}_{{n}} =\mathrm{0} \\ $$$${characteristic}\:{equation}: \\ $$$${r}^{\mathrm{2}} −{r}+\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow{r}_{\mathrm{1},\mathrm{2}} =\frac{\mathrm{1}\pm{i}\sqrt{\mathrm{3}}}{\mathrm{2}}={e}^{\pm\frac{\pi{i}}{\mathrm{3}}} \\ $$$${say}\:{a}_{{n}} ={Ae}^{\frac{{n}\pi{i}}{\mathrm{3}}} +{Be}^{−\frac{{n}\pi{i}}{\mathrm{3}}} \\ $$$${or}\:{a}_{{n}} ={C}\:\mathrm{cos}\:\frac{{n}\pi}{\mathrm{3}}+{D}\:\mathrm{sin}\:\frac{{n}\pi}{\mathrm{3}} \\ $$$${a}_{\mathrm{3}} =−{C}=\mathrm{4}\:\Rightarrow{C}=−\mathrm{4} \\ $$$${a}_{\mathrm{5}} =−\mathrm{4}\:\mathrm{cos}\:\frac{\mathrm{5}\pi}{\mathrm{3}}+{D}\:\mathrm{sin}\:\frac{\mathrm{5}\pi}{\mathrm{3}}=\mathrm{6}\:\Rightarrow{D}=−\frac{\mathrm{16}}{\:\sqrt{\mathrm{3}}} \\ $$$$\Rightarrow{a}_{{n}} =−\mathrm{4}\left(\mathrm{cos}\:\frac{{n}\pi}{\mathrm{3}}+\frac{\mathrm{4}}{\:\sqrt{\mathrm{3}}}\:\mathrm{sin}\:\frac{{n}\pi}{\mathrm{3}}\right) \\ $$$${or} \\ $$$${a}_{{n}} =−\frac{\mathrm{4}\sqrt{\mathrm{57}}}{\:\mathrm{3}}\:\mathrm{sin}\:\left(\frac{{n}\pi}{\mathrm{3}}+\mathrm{tan}^{−\mathrm{1}} \frac{\sqrt{\mathrm{3}}}{\mathrm{4}}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *