Menu Close

If-f-x-2x-3-prove-that-f-x-1-2x-3-




Question Number 217664 by hardmath last updated on 17/Mar/25
If   f(x) = (√(2x + 3))  prove that:   f ′(x) = (1/( (√(2x + 3))))
$$\mathrm{If}\:\:\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\sqrt{\mathrm{2x}\:+\:\mathrm{3}} \\ $$$$\mathrm{prove}\:\mathrm{that}:\:\:\:\mathrm{f}\:'\left(\mathrm{x}\right)\:=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2x}\:+\:\mathrm{3}}}\: \\ $$
Answered by SdC355 last updated on 18/Mar/25
f^((1)) (x)=lim_(h→0)  ((f(x+h)−f(x))/h).  ((d  )/dx)(√(2x+3))=lim_(h→0)  (((√(2(x+h)+3))−(√(2x+3)))/h)  lim_(h→0)  (((√(2x+2h+3))−(√(2x+3)))/h)=  lim_(h→0)  ((((√(2x+2h+3))−(√(2x+3))))/h)∙((((√(2x+2h+3))+(√(2x+3))))/( ((√(2x+2h+3))+(√(2x+3)))))  ∴lim_(h→0)  ((2x+2h+3−(2x+3))/(h((√(2x+2h+3))+(√(2x+3)))))  lim_(h→0)  ((2x+2h+3−2x−3)/(h((√(2x+2h+3))+(√(2x+3)))))=  lim_(h→0)  ((2h)/(h((√(2x+h+3))+(√(2x+3))))=(2/(2(√(2x+3))))  (1/( (√(2x+3))))
$${f}^{\left(\mathrm{1}\right)} \left({x}\right)=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{f}\left({x}+{h}\right)−{f}\left({x}\right)}{{h}}. \\ $$$$\frac{\mathrm{d}\:\:}{\mathrm{d}{x}}\sqrt{\mathrm{2}{x}+\mathrm{3}}=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{2}\left({x}+{h}\right)+\mathrm{3}}−\sqrt{\mathrm{2}{x}+\mathrm{3}}}{{h}} \\ $$$$\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{2}{x}+\mathrm{2}{h}+\mathrm{3}}−\sqrt{\mathrm{2}{x}+\mathrm{3}}}{{h}}= \\ $$$$\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\sqrt{\mathrm{2}{x}+\mathrm{2}{h}+\mathrm{3}}−\sqrt{\mathrm{2}{x}+\mathrm{3}}\right)}{{h}}\centerdot\frac{\left(\sqrt{\mathrm{2}{x}+\mathrm{2}{h}+\mathrm{3}}+\sqrt{\mathrm{2}{x}+\mathrm{3}}\right)}{\:\left(\sqrt{\mathrm{2}{x}+\mathrm{2}{h}+\mathrm{3}}+\sqrt{\mathrm{2}{x}+\mathrm{3}}\right)} \\ $$$$\therefore\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2}{x}+\mathrm{2}{h}+\mathrm{3}−\left(\mathrm{2}{x}+\mathrm{3}\right)}{{h}\left(\sqrt{\mathrm{2}{x}+\mathrm{2}{h}+\mathrm{3}}+\sqrt{\mathrm{2}{x}+\mathrm{3}}\right)} \\ $$$$\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\cancel{\mathrm{2}{x}}+\mathrm{2}{h}+\cancel{\mathrm{3}}−\cancel{\mathrm{2}{x}}−\cancel{\mathrm{3}}}{{h}\left(\sqrt{\mathrm{2}{x}+\mathrm{2}{h}+\mathrm{3}}+\sqrt{\mathrm{2}{x}+\mathrm{3}}\right)}= \\ $$$$\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2}\cancel{{h}}}{\cancel{{h}}\left(\sqrt{\mathrm{2}{x}+{h}+\mathrm{3}}+\sqrt{\mathrm{2}{x}+\mathrm{3}}\right.}=\frac{\cancel{\mathrm{2}}}{\cancel{\mathrm{2}}\sqrt{\mathrm{2}{x}+\mathrm{3}}} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}{x}+\mathrm{3}}} \\ $$
Commented by hardmath last updated on 21/Mar/25
thankyou dearSir
$$\mathrm{thankyou}\:\mathrm{dearSir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *